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1. Introduction 

 
 Nuclear power plants (NPP) are complex systems 

equipped with numerous sensors that play a vital role in 

their operation. Since operators rely on the information 

provided by these signals to operate NPP, sensor faults 

can result in providing incorrect information to the 

operators and thereby leading to improper actions that 

can affect NPP safety [1]. This can be found in an 

example in Three Mile Island (TMI) NPP accidents, 

where incorrect signals to operators were a major 

contributing factor to catastrophic incidents [2]. 

Over time, sensors in various instruments may degrade 

and be affected by vibrations, shocks, and environmental 

changes, leading to measurement errors [3]. Signal drift, 

a gradual shift from the expected value, is notably 

observed in NPPs [4, 5]. To ensure NPP safety, it's 

crucial to recover these drift signals after detecting them, 

necessitating the development of a corrective technique. 

To address this, several previous studies have 

proposed signal reconstruction and restoration 

algorithms using Long Short-Term Memory (LSTM) [6], 

Generative Adversarial Networks (GAN) [7], 1D 

Convolutional Neural Networks (1D-CNN) [8], Variable 

AutoEncoder (VAE) [9] and multivariate autoregressive 

(MVAR) [10].  

Extending these works, this study aims to develop a 

signal restoration algorithm combining a VAE with an 

LSTM method. The purpose of the proposed algorithm 

is to restore drift failures into normal signals during the 

normal operation. To do this, the authors collected data 

using an iPWR simulator, which is a kind of small 

modular reactor (SMR), and then tested it with drift-

injected data. 

 

2. Methodology  

 

2.1 LSTM 

 

LSTM, an advanced Recurrent Neural Network 

(RNN), offers improved long-term data dependencies. Its 

distinctive feature from RNN is its cell state, which 

retains information over long sequences [11]. LSTM 

uses three gates: forget, input, and output. The forget gate 

decides what to discard from the cell state using a 

sigmoid function. The input gate uses both sigmoid and 

tanh functions to update the cell state. The output gate 

sets the next hidden state's value based on current cell 

state. The structure of an LSTM is shown in Fig. 1. 

 

 
 

Fig. 1. LSTM Architecture. 
 

2.2 VAE 

 

VAE is one of variational inference techniques that 

have been used for image and signal restoration [12]. 

VAE employs an encoder and decoder, which allows it 

to compress features from input into a latent space and 

subsequently generate data to be similar to the input. An 

encoder in VAE extracts a normal distribution using 

mean 𝜇  and variance 𝜎  with the encoder function, 

𝑞𝜙(𝑧|𝑥). Then the decoder approximates the posterior 

distribution with 𝑝𝜃(𝑧|𝑥).VAE samples a latent vector 

(appear in z in Fig. 2.) which follows the normal 

distribution. As a result, a decoder produce a 

reconstructed output 𝑥′. 

 

 
 

Fig. 2. VAE Architecture. 

 

3. Signal Restoration Algorithm for Drift Signal 

 

The objective of this algorithm is to restore a drift 

signal to its correct signal when drift occurs during 

normal operation.  As illustrated in Fig. 3, the algorithm 

consists of three steps: 1) pre-processing, 2) restoration 

of faulty signal, and 3) validation of restored faulty signal. 

 

Encoder : Decoder :
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Fig. 3. The proposed signal restoration algorithm for drift 

signals in normal operation. 

 

3.1 Pre-processing 

 

Pre-processing involves input selection, noise 

injection, drift injection, and data normalization. Key 

input variables were selected through a procedure 

analysis based on the Integral Pressurized Water Reactor 

(iPWR) Simulator Handbook [13] and system analysis 

using the iPWR simulator, resulting in 100 chosen 

variables. 

Since signals in actual NPPs include noises due to 

various factors [14], this study artificially introduced 

White Gaussian noise into simulator data, assuming a 

standard deviation of 0.001 for input values. 

Min-max normalization adjusts data to a 0-1 scale to 

mitigate varied input scales' impact on AI training, as 

described in Eq. 1. In Eq.1. X is the original value, 𝛸𝑚𝑖𝑛 

is the minimum value in the dataset, 𝛸𝑚𝑎𝑥  is the 

maximum value in the dataset and 𝛸𝑁𝑜𝑟𝑚  is the 

normalized value. 
 

(1) 𝛸𝑁𝑜𝑟𝑚 =
(𝛸 − 𝛸𝑚𝑖𝑛)

(𝛸𝑚𝑎𝑥 − 𝛸𝑚𝑖𝑛)
 

 

3.2 Restoration Network 

 

 The network proposed in this study utilizes VAE 

combining with LSTM as illustrated in Fig. 4. The 

objective of this network to generate restored data 

resembling normal signals from the drift signal.  

 

 
 

Fig 4. VAE-LSTM Network Structure. 

 

3.3 Validation of restored faulty signal 

 

The validation of restored data checks if within a set 

boundary. If within the threshold, it's used as a normal 

signal; if not, the proposed network performs signal 

restoration. 

 

4. Training and Experiment 

 

4.1 Training and Optimization 

 

 
 

Fig 5. iPWR Simulator. 

 

The training and testing data were collected using the 

iPWR simulator that is a kind of SMR developed by 

Tecnatom. Fig. 5 shows the main display of the iPWR 

simulator. A total of 50 datasets were collected for a 

normal scenario, beginning-of-life 100% with forced 

circulation operation. Each dataset includes 10-minute 

normal operation. Among the datasets, 40 datasets (80%) 

and 10 datasets (20%) were used for training and 

validation, respectively.  

 To improve the performance of the proposed network, 

this study performed optimizations for model 

hyperparameters (e.g. sequence, batch, layer, and  
𝐿𝑉𝐴𝐸). The performances were measured by combining 

reconstruction and KL divergence errors. Reconstruction 

error measures input-output discrepancies, while KL 

divergence contrasts latent variable distributions. The 

combined loss can be calculated as Eq. 2-5. In Eq. 2~3 

𝑥𝑖 represents the 𝑖𝑡ℎ element of the original data, while 

𝑥𝑖
′ denotes the  𝑖𝑡ℎ element of the reconstructed data. In 
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Eq. 4, 𝜇𝑗 and 𝜎𝑗 represent the mean and variance of the 

𝑗𝑡ℎ dimension of the latent variable, respectively. 

 

(2) 𝐿𝑟𝑒𝑐 = −𝛴𝑖(𝑥𝑖𝑙𝑜𝑔 (𝑥𝑖
′) + (1 − 𝑥𝑖)𝑙𝑜𝑔 (1 − 𝑥𝑖

′)) 

(3) 𝐿𝑟𝑒𝑐 = 𝛴𝑖(𝑥𝑖 − 𝑥𝑖
′) 

(4) 𝐿𝐾𝐿 =
1

2
𝛴𝑗(1 + 𝑙𝑜𝑔 (𝜎𝑗

2) − 𝜇𝑗
2 − 𝜎𝑗

2)  

(5) 𝐿𝑉𝐴𝐸 = 𝐿𝑟𝑒𝑐 + 𝐿𝐾𝐿  

Table 1: Model Optimization 

No. Sequence Batch      Layer 𝑳𝑽𝑨𝑬 
1 5 32 7 6.1493e-05 

2 10 32 7 1.7460e-04 

3 10 32 9 1.9730e-04 

4 5 64 9 8.0142e-05 

5 10 64 7 1.1493e-05 

6 10 64 9 6.1839e-05 

7 5 256 9 1.8210e-06 

8 10 256 9 1.3362e-06 

9 15 512 10 4.6030e-05 

10 15 256 9 4.8383e-05 

 

4.2 Fault Signal Injection 

 

The drift signal was injected into the normal data by 

multiplying it with a pre-set drift ratio at each time point. 

The injection of the drift signal started 60 seconds after 

the beginning of the scenario and was set to increase by 

0.001% per second. 

 

4.3 Threshold 

 

The threshold plays a role in determining whether the 

restored data is reliable. This study sets the threshold as 

the sensor's allowable error range, 0.25% for normal 

signals.  

 

4.4 Result 

 

The trained algorithm was tested with a drift signal 

artificially injected, and its restoration accuracy was 

assessed using the Mean Square Error (MSE). Table 2 

and Fig. 6 shows the calculated MSE and the restored 

results. 

Table 2: MSE values for variables 

No. Variable MSE 
1 Steam pressure line 1 (MPa) 0.0002 

2 Steam pressure line 2 (MPa) 0.0002 

3 Coolant flow rate (kg/s) 0.0014 

4 RPV Water Level (%) 2.51E-05 

5 PZR Level (%) 4.71E-05 

6 RPV Pressure (MPa) 2.49E-05 

7 Coolant Temperature at core outlet (ºc) 4.16E-05 

 

 

 

 
(a) Steam pressure line 1 (MPa). 

 

 
(b) Steam pressure line 2 (MPa). 

 

 
(c) Coolant flow rate (kg/s). 

 

 
(d) RPV water Level (%). 

 

 
(e) PZR Level (%). 
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(f) RPV pressure (MPa). 

 

 
(g) Coolant Temperature at core outlet (ºc). 

 

Fig 6. Comparisons of the restored data (orange), the drift-

injected data (red) with original data (blue). 

 

4. Conclusions 

 

In this paper, an algorithm is proposed to restore Drift 

faults from normal signals to their original state using the 

VAE-LSTM model. The test result indicated that the 

proposed algorithm successfully restored all seven 

output variables within the designated threshold. 

Additionally, leveraging the inherent characteristics of 

the VAE model, noise was eliminated to yield more 

accurate information in the results. Through validation, 

it was demonstrated that the proposed algorithm achieves 

its intended high-quality restoration performance. 

Therefore, this algorithm can provide operators with 

more accurate information during normal nuclear power 

plant operations when a drift fault occurs. 
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