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1. Introduction 
 

In the Fukushima accident, communication between 
the nuclear power plant and radiation disaster 
prevention systems was disrupted, resulting in the 
unavailability of information from key operating 
parameters and off-site detector doses. Consequently, it 
is impossible to respond to the accident. 

Japan Atomic Energy Agency (JAEA) has been 
operating a radiation disaster prevention system called 
System for Prediction of Environmental Emergency 
Dose Information (SPEEDI). SPEEDI analyzes 
environmental impacts, such as atmospheric 
concentrations and radiation doses of radioactive 
materials, during emergencies. It utilizes source term 
information, weather conditions, and geographic 
information. In the Fukushima accident, the operator of 
SPEEDI was unable to calculate the dispersion of the 
radioactive plume due to a communication disconnect 
between SPEEDI and the power plant. 

Similarly, the Korea Institute of Nuclear Safety 
(KINS) has been operating a radiation disaster 
prevention system called the Atomic Computerized 
Technical Advisory System for Radiological 
Emergencies (AtomCARE). AtomCare also cannot be 
used for accident response without key operating 
variables and offsite radiation dose information. 

Severe accidents, as defined, involve "significant 
damage to the reactor core" or “core meltdown” with  
potential for large release of radioactive products to the 
environment. In severe accidents, key operating 
parameters significantly impact decision-making during 
emergency response. When key operating parameters 
are unavailable, it is necessary to estimate internal plant 
information using off-site radiation data. 

Table 1 categorizes whether the plant's key operating 
parameter and off-site radiation measurement data are 
transmitted to the radiation disaster prevention system 
in the event of a severe accident. It also classifies the 
possibilities of accident response based on the 
transmission status. 

 
Table 1. Accident response based on connection between 

power plants and off-site emergency management center 

Cases 
Nuclear power plant’s 

key operating parameter 
Off-site radiation 

monitoring instrument 
Accident 
response 

Case 1 Connected Connected Possible 
Case 2 Unconnected Connected Impossible
Case 3 Unconnected Unconnected Impossible

 

In Case 1, the communication lines between the nuclear 
power plant and the off-site emergency operations 
center. Key operating parameters of a nuclear power 
plant are accessible. In this case, key operating 
parameters are transmitted to the radiation disaster 
prevention system in order to facilitate the response to 
accidents. In Case 2, the connectivity between the 
nuclear power plant and the off-site emergency 
operations center is disrupted. In this case, it is 
impossible to respond to the accident because of the 
source term. In Case 3, the scenario is the Fukushima 
accident [2]. Communication with internal and external 
power plants has been disrupted. Key operating 
parameters and off-site radiation monitoring 
instruments are currently unavailable. In this case, the 
source term cannot be calculated, and it is impossible to 
respond to the accident. 
From Table 1, it is impossible to respond to Cases 2 and 
3 because the plant's key operating parameters are not 
transmitted to the off-site emergency management 
center. However, in Case 2, off-site radiation 
information is available. We can respond to the accident 
by making an estimation of the plant's condition based 
on off-site radiation data. 
Fig. 1. shows an accident at a single nuclear power 
plant, referred to as Case 2. Due to a severe accident, 
the connection between the power plant and the 
radiation disaster prevention system was severed. 
However, radiation monitoring instruments [3] located 
outside the plant can transmit information about 
radiation measurements to the radiation disaster 
prevention system. In this case, the off-site radiation 
dose information can be used to predict the conditions 
inside the nuclear power plant and inform accident 
response. 

 
 

Fig. 1. Accident in a single unit  
 

In this paper, for the first time, artificial intelligence is 
used to estimate the type of accident and the status of 
core damage in a nuclear power plant. This estimation 
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is based on the analysis of off-site radiation monitoring 
instrument data. The main objective of this study is to 
develop a response strategy for a Case 2 accident. 
 
2. Steps to train AI for accident estimation based on 

radiation information 
 
Fig 2 shows the method for calculation in Case 2. The 
accident details of the nuclear power plant are obtained 
from the RASCAL code. The spread of radiation dose is 
calculated in MACCS using the source term 
information provided by RASCAL. We calculate the 
dose information at the radiation monitoring instrument 
locations using MURCC. Further details on the 
calculation steps are discussed in the subsections. 
 

 
Fig. 2. Code used to calculate the accidents matched in Fig 1. 
 
 
The training procedure for AI in the Case 2 accident is 
outlined in five steps, as depicted in Fig. 3. In the figure, 
N represents the type, size, and pathway of the 
radioactive leakage accident. D(x, y, t) denotes the two-
dimensional nuclide concentration at a specific location 
at 15-minute intervals, calculated by MURCC. The AI 
training involves learning the functional expression N = 
f(D(x, y, t)), where f() represents the learned function. 
The trained AI model can then predict N when provided 
with D(x, y, t) information that was not used in training. 
 
2.1 Selection of a nuclear power plant accident 
scenario and calculation of the source term 
 
(Step 1) RASCAL [4] was a deterministic accident 
consequence assessment code provided by the U.S. 
Nuclear Regulatory Commission (NRC). RASCAL 
calculated the release of radioactive materials to the 
environment based on selected plant characteristics, 
accident type, accident size(N), release pathways, and 
release rates. RASCAL provides calculations for the 
total release of radioactive material, releases in 15-
minute intervals, short-range plume model diffusion 
results, long-range puff model diffusion results, and 
doses to various human organs. 
The total release of radioactive materials obtained from 
RASCAL calculations is used as input for MACCS 
(Step 2). Additionally, releasing radioactive materials at 

15-minute intervals serves as input for MURCC(Step 3). 
The accident type and size selected for calculation are 
used as training data for AI training (Steps 4 and 5). 
 
2.2 Calculation of off-site source concentration and 
radiation dose 
 
(Step 2) MACCS [5] was a level 3 probabilistic 
accident consequence assessment code developed by 
Sandia National Laboratories (SNLs). MACCS input is 
based on the total release amount obtained from 
RASCAL. Additionally, MACCS input uses 
environmental information around the nuclear power 
plant and weather information (W) to calculate 
atmospheric diffusion and the off-site radiation effects. 
The time-cumulative radioactive substance 
concentration and atmospheric diffusion coefficient of 
the MACCS code are used as input for MURCC. 
 
2.3 Post-processing to calculate source concentration 
and radiation dose at all points 

 
(Step 3) The MURCC (Multi-unit Radioactive 
Consequence Calculation) [6] code was developed by 
the Integrated Nuclear Safety and Security Laboratory 
at Sejong University. MURCC calculated nuclide 
concentrations and doses at specific points on the 
ground surface. It uses one-dimensional Gaussian 
radiation cloud results from the MACCS code. MURCC 
can calculate nuclide concentrations and doses at 
receptor (radiation monitoring instruments) locations, 
considering emissions during specific time intervals.[6] 
In this step, MURCC's input is the time-cumulative 
radioactive substance concentration at the centerline of 
the radioactive cloud and the 15-minute interval 
radioactive material concentration from RASCAL. 
 In this study, calculation focused on Cs-137 as a 
nuclide. MURCC calculates the 15-minute interval 
radioactive concentration and dose f(D(x, y, t)) at each 
location. The nuclide concentration at specified 
instrument locations serves as training data for AI 
training. 
 
2.4 AI training 
 
(Step 4) The preprocessing of information obtained 
from MURCC included 12-hour doses at 15-minute 
intervals from five instruments, weather information for 
12 hours during the accident, accident type, and 
accident size. The dose values were normalized to 
facilitate learning, and the accident type and size were 
preprocessed using one-hot encoding. The nuclide 
concentration D(x, y, t) at 15-minute intervals at the 
coordinates corresponding to the detector locations and 
the accident size and type (N) are used as training data 
for supervised learning. In this paper, the algorithms 
used for learning include Linear Regression [7], 
Decision Tree [8], Random Forest [9], XGBoost [10], 
and Deep Neural Network (DNN) [11]. 
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After training, the accident's size and type can be 
estimated by the nuclide concentration on the detector 
locations at 15-minute intervals. 
 
2.5 Testing trained AI 
 
(Step 5) We employed two testing methods. The first 
method uses a data ratio of 7:3 for training and testing. 
The Second method uses all 900 data points and a test 
set of 90 randomly selected data points. The results 
from both methods were similar. Therefore, we decided 
to evaluate the results using the data ratio of 7:3. 
 
 

3. Evaluation of AI learning results 
 
The evaluation of AI learning results was based on 
accuracy and F1 score[12]. Accuracy measures the  
 proportion of correctly predicted samples, while the F1 
score is the harmonic mean of precision and recall. 
Precision measures the proportion of correctly predicted 
positive samples, and recall measures the proportion of 
actual positive samples that were correctly predicted. 
 
 

3.1 Accuracy and F1 score. 
 
Accuracy is a measure of how many of the total 
predictions made by the model are correct. It's the ratio 
of correct predictions to the total number of predictions. 
Mathematically, the accuracy can be calculated as Eq 
(1). 

 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

(1) 

 
The F1 score is a metric that considers both precision 
and recall to provide a balanced measure of a model's 
performance. Precision is the ratio of true positive 
predictions to the total predicted positives, while recall 
is the ratio of true positive predictions to the total actual  
positives. Mathematically, precision and recall are 
defined as Eq (2). 
 
 

𝑃𝑟𝑒𝑐𝑖𝑐𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

(2) 

 

Fig.3. Steps to train AI for accident estimation based on radiation information 
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The F1 score is the harmonic mean of precision and 
recall, and it considers both false positives and false 
negatives. The formula for the F1 score is Eq (3). 
 

𝐹1 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
 (3) 

 
3.2 Evaluating single accident AI learning results 
 
In Fig. 4. The learning results for single unit accident 
classification showed that XGBoost achieved the 
highest accuracy and F1 score of 97% on the test data, 
while linear regression had the lowest accuracy but still 
classified with 78% accuracy and F1 score. The reason  
why Accuracy and F1 score have the same value is 
because all the incident data was provided uniformly. 
 Fig 5. is a classification of single-unit reactor core 
damage status. The DNN algorithm achieved the 
highest F1 score of 64% on the test data, while linear 
regression had the lowest F1 score of 32% on the test 
data. 

 
 
 

4. Conclusions 
 
This paper introduces the first study to use artificial 
intelligence technology to estimate accidents inside a 
power plant using off-site radiation information.  
AtomCare is operated in Korea. If an accident similar to 
the Fukushima accident occurs, the AtomCare will not 
be available. To prepare for the case, using off-site 
radiation to classify severe accidents at nuclear power 
plants and predict their trends is necessary.  
The results show that the relationship between core 
damage status and the Cs-137 nuclide dose is difficult 
to distinguish. In addition, the current AI training 
requires 12 hours of information to determine the 
accident classification and accident size. To compensate 
for this, the AI should be able to classify the accident 
classification and accident size with less time for 
dosimetry information. This paper only estimates 
single-unit accidents. It is necessary to conduct future 
research on multi-unit accident estimation. 
 

 
 
 

 
 

Fig. 4. Accuracy and F1 score of accident identification. 

  

Fig. 5. Accuracy and F1 score of  core damage status. 
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