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1. Introduction 

 
The nuclear power plants (NPPs) consist of huge 

number of safety and operating systems to generate 

electricity safely and efficiently with hundreds of 

indicators and tens of thousands of components. When 

the transition occurs into abnormal events, operators 

must find appropriate abnormal operating procedures 

(AOPs) and take actions within a limited time from the 

dynamic indicators to prevent entry into a reactor trip and 

to return to a normal condition. Since in the case of 

Korean advanced power reactor 1400, there are about 

200 sub-procedures in the AOPs, operators are trained to 

cope with abnormal events using AOPs, while under 

huge number of dynamic indicators. The limited time 

and the dynamic change of numerous indicators in 

abnormal events get more burden to operators and are 

likely to cause human errors [1]. 

To solve these problems, recent studies have been 

conducted in the nuclear engineering fields to support 

operators of NPPs with artificial intelligence (AI) [2, 3]. 

However, most studies have not prepared proper 

measures to apply to actual power plants. Even for the 

same types of pressurized water reactors, the components 

of NPPs differ from the offset, magnitude of increase or 

decrease, and recovery time. Resisting the fluctuated and 

changed parameters will be challenging task for the 

common data-driven AI models.  

To address these problems, this study introduces the 

compatible abnormality diagnosis model that can 

diagnose abnormal events where the original simulator 

data and intentionally modified data to depict real-world 

plants. Proposed model only trains the original data and 

then, the model will test the original and modified data 

together. The modified data is generated different from 

the original data with abnormality injection time for 

different recovery time and go across the modified filter 

for offset, magnitude of the change. To cope with data 

differences, we utilize robust preprocessing with plant-

knowledge scaling and fuzzification filter to recognize 

how increase, decrease, or maintenance. We compared 

the simple feedforward neural network (FNN) and one-

dimension convolutional neural network (CNN) with our 

methodology. 

 

2. Data differences between NPPs simulators 

 

In this section, the data differences are described by 

the 3KEYMASTER simulator of western services 

corporation and Barakah nuclear power plant simulator 

[4]. Two simulators are two-loop 1400MWe pressurized 

water reactor, but not exactly the same. The Fig. 1. shows 

data trends of the volume control tank level and 

condenser cooling water outlet temperature according to 

(a) and (b), respectively. From (a), the magnitudes of 

offset and increase are different and from (b), the 

recovery time and magnitude are also different between 

two simulators. In addition, figure (c) illustrates 

pressurizer level of 3KEYMASTER simulator with and 

without noise. In these data differences, some strategies 

distinct from the existing abnormality diagnosis models 

are needed. 

 

 

Fig. 1. Data difference between 3KEYMASTER and BNPP 

simulators.; (a): volume control tank level; (b): condenser 

cooling water outlet temperature; (c): pressurizer level. 
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3. Methodology 

 

Fig. 2. illustrates the overall framework of the 

compatible abnormality diagnosis model. Since real NPP 

data is inaccessible and difficulties in the absences of 

common variables between simulators, we selected 

3KEYMASTER simulator and tried to depict 

characteristics of real plants. In this study, we call the 

data that depict the characteristics of real plants as 

modified data. The points below briefly introduce the 

framework of the compatible abnormality diagnosis 

model. 

• Data preprocessing: Raw data are preprocessed 

through feature selection, normalization, and data 

transformation. Feature selection is based on the 

knowledge of the symptoms of abnormal events or the 

representative plant parameter. The normalization range 

is knowledge-based and robust to cover a wide range of 

offsets and rates of change. Data transformation is 

performed by using data differences and fuzzification 

filter to get how much time-series variables have 

changed. In the case of modified data, there are 

additional steps in the data production stage and the 

preprocessing process. 

• Compatible abnormality diagnosis models: The 

compatible abnormality diagnosis model is trained and 

tested through FNN and 1D-CNN. The proposed models 

train only original data and test original and modified 

data either. 

 

 

 

Fig. 2. The framework of Compatible abnormality diagnosis 

model. 

 

3.1 Data preprocessing 

 

Raw data is reformed in data preprocessing process 

through feature selection, normalization, fuzzification 

filters. In the feature selection process, we choose some 

variables of the simulator based on the knowledge of the 

abnormal events and general monitoring parameters. 

Normalization process performs minmax scaling with 

wider ranges than the minimum and maximum value of 

the train data to cover offset and high change-rate of 

modified data like below equation (1) where t is time, n 

is the order of the variable, and m is a regulator for 

margin to cover modified data.  

 

𝑥̂t,n

=
𝑥𝑡,𝑛 − 𝑥min 𝑜𝑓 𝑛𝑡ℎ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 × (1 − 𝑚)

𝑥max 𝑜𝑓 𝑛𝑡ℎ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 × (1 + 𝑚)   − 𝑥min 𝑜𝑓 𝑛𝑡ℎ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 × (1 − 𝑚)
,   

𝑤ℎ𝑒𝑟𝑒 1 ≤ 𝑛 ≤ 𝑁,
𝑁 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 
𝑎𝑛𝑑 0 < 𝑚 < 1                                (1) 

 

Data transformation processes consist of two steps. 

The first step expresses the normalized data as the data 

differences by simple subtraction between before and 

after abnormality injection. The second step uses 

fuzzification filters. According to the number of 

membership functions of the fuzzification filters, data is 

augmented as the input data. Data transformation 

processes are illustrated as the Fig. 3. and 4. 

 

 

Fig. 3. Data transformation by data differences. 

 

 

Fig. 4. Data transformation by fuzzification filters. 

 

3.2 Compatible abnormality diagnosis models 

 

The proposed model will be compared using two 

neural networks (FNN and CNN), and the training data 

is only preprocessed original data, and the test data is 

preprocessed original and modified data that depict real-

plant data. 

 

3.2.1. Feedforward neural network  
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The FNNs consist of a feedforward single- or multi-

layer perceptron and are widely used in various fields 

such as classification, forecasting even in manufacturing 

industries [5]. In this study, FNNs are used as the 

classification model for abnormality diagnosis as an 

operator support system. FNNs have generally the input, 

hidden, and output layer. The input layer transfer data to 

hidden layers which calculate and update weights for 

feature extraction with activation functions. The output 

layer is formed with fully connected layer which is called 

FC-layer or dense layer and in classification problems 

the number of dense layers are the same as the number 

of classes or labels. Fig. 5. Shows the basic architecture 

of the FNNs. 

 

 

Fig. 5. The basic architecture of the FNNs 

 

3.2.2. One-dimensional convolutional neural network  

 

The CNNs show state-of-the-art results and facilitate 

the feature extraction between adjacent input parameters 

or image from the characteristics of convolutional 

calculations. Because of the CNNs are specially used in 

the pattern recognition fields of images or classification 

problems [6].  

 

 

4. Experimental settings 

 

4.1 Description of datasets 

 

All datasets are produced from the 3KEYMASTER 

simulator which is a 2-loop 1400MWe generic 

pressurized water reactor. The shape of each dataset is 

120 seconds and 88 plant parameters, and all abnormal 

malfunction is injected into 61 seconds. The number of 

the datasets are 50 for each ramp time datasets of each 

label. For instance, the number of datasets of ramp time 

0 seconds is 550. The sorts of the datasets and description 

is shown as Table I. 

 

Table I: Test data description 

Label Description 

Normal Initial condition #2 MOL* 100% 

POSRV* Pilot operated safety relief valve leak 

SGTL* Steam generator A tube leak 

RCP* RCP seal water injection valve positioner close 

failure 

PZR* Pressurizer spray valve positioner open failure 

LTDN* Letdown line leak inside containment 

CHRG* Charging line valve positioner close failure 

TCS* High pressure turbine control valve positioner 

close failure 

LFH* Feedwater heater 4A tube break 

CDS* Loss of condenser vacuum 

MFW* MFWP recirculating valve positioner open 

failure 

* MOL: middle of life; POSRV: pilot operated safety relief 

valve; SGTL: steam generator tube leakage; RCP: reactor 

coolant pump; PZR: pressurizer; LTDN: letdown water 

system; CHRG: charging water system; TCS: turbine control 

system; LFH: low pressure feedwater heater; CDS: 

condensate system; MFW: main feed water. 

 

Training datasets are generated with 10 seconds ramp 

time which is the time at which the malfunction injects 

linearly. Modified datasets are generated with 0-, 20-, 

and 30-seconds ramp time for diverse datasets of the 

different recovery time or magnitude of the peak values. 

After that, modified datasets are processed again through 

offset, change-rate, and noise. Fig. 6. depicts the 

processes of the modified datasets. 

 

 

Fig. 6. The processes of the modified datasets; (a): ramp time 

0, 10, 20, 30 seconds datasets; (b): the datasets with offset  

Each dataset is preprocessed by normalization and 

data transformation. After normalization of equation (1), 

data is transformed through 𝑓𝐿(𝑋120,𝑛 − 𝑋60,𝑛)  where 
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𝑓𝐿(𝑥) is the Lth membership function and 𝑋120,𝑛  is the 

time 120 seconds data of nth
 plant parameters and 0 ≤

𝐿 ≤ 7, 𝑎𝑛𝑑 1 ≤ 𝑛 ≤ 88. 

4.2 Descriptions of models 

 
We used FNNs and 1D-CNNs to test and compare the 

compatible abnormality diagnosis model. Below Table II and 

III show the architectures of the models. 

 

Table II: The architecture of the FNNs 

Characteristic Description 

Input size (# of membership 

function of the 

fuzzification filter, 88) 

# of dense layers 2 

Activation function ReLU, softmax 

Loss function Sparse categorical 

crossentropy 

Optimizer Adam 

Epochs 1000 

 

Table III: The architecture of the CNNs 

Characteristic Description 

Input size (# of membership 

function of the 

fuzzification filter, 88) 

# of Conv1D layers 1 

# of maxpooling1D 1 

# of dense layer 1 

Activation function ReLU, softmax 

Loss function Sparse categorical 

crossentropy 

Optimizer Adam 

Epochs 1000 

 

5. Results 

 

Training datasets are not modified but preprocessed 

ramp time 10 seconds data and test trained datasets and 

other ramp time datasets with modified as an alternative 

to real world plants datasets. The cases were divided into 

various types of applying proposed methods, modified 

degree, number of membership functions of the 

fuzzification filters, and type of models. The gaussian 

distribution facilitates to make up offset, change-rate, 

and noise.  

 

Table IV: The results of no fuzzification filters 

 Case 1 Case 2 Case 3 Case 4 

Proposed 

methods 

X O X O 

# of 

membership 

functions 

X X X X 

Offset N(0,0.05) N(0,0.05) N(0,0.1) N(0,0.1) 

Change-rate N(0,0.05) N(0,0.05) N(0,0.1) N(0,0.1) 

Noise N(0,0.005) N(0,0.005) N(0,0.01) N(0,0.01) 

NN model FNN FNN FNN FNN 

Accuracy 

(%) 

9.39 94.67 9.09 85.52 

 

Table V: The results of FNNs 

 Case 5 Case 6 Case 7 Case 8 

Proposed 

methods 

O O O O 

# of 

membership 

functions 

3 7 3 7 

Offset N(0,0.05) N(0,0.05) N(0,0.1) N(0,0.1) 

Change-rate N(0,0.05) N(0,0.05) N(0,0.1) N(0,0.1) 

Noise N(0,0.005) N(0,0.005) N(0,0.01) N(0,0.01) 

NN model FNN FNN FNN FNN 

Accuracy 

(%) 

97.39 99.03 92.39 94.61 

 

Table VI: The results of CNNs 

 Case 9 Case 10 Case 11 Case 12 

Proposed 

methods 

O O O O 

# of 

membership 

functions 

3 7 3 7 

Offset N(0,0.05) N(0,0.05) N(0,0.1) N(0,0.1) 

Change-rate N(0,0.05) N(0,0.05) N(0,0.1) N(0,0.1) 

Noise N(0,0.005) N(0,0.005) N(0,0.01) N(0,0.01) 

NN model CNN CNN CNN CNN 

Accuracy 

(%) 

96.91 98.61 83.21 92.3 

 

Table IV shows the novelty of the proposed 

preprocesses at modified datasets similar to actual plant 

datasets and distinct accuracy. The results mean that in 

order to be less affected by the data level, information of 

how much increase and decrease is necessary as input 

values described in Fig. 3. Naturally, the more data is 

modified, the less accurate it is.  

Table V and VI show the results in the point of view 

of the types of models, number of the membership 

functions of the fuzzification filters, and how much 

modified as real plant datasets. In all results, the accuracy 

of the FNNs with the simplest architecture was high. 

CNNs’ classification performance is valuable, but since 

creating a robust model is the core of the compatible 

abnormality diagnosis model, the features that capture 

the characteristics of specific data played a role in 

hindering diagnosis process in modified data. In contrast, 

we have increased the compatibility by building a simple 

architecture model of FNNs. Rather than simply 

applying an increasing and decreasing amounts as inputs, 

we could further improve accuracy by using fuzzy filters 

to identify the increasing and decreasing tendency. 

 

6. Conclusions 

 

NPPs consist of complex systems for safety and 

efficient electricity production with hundreds of 

indicators and tens of thousands of components. 

Furthermore, to improve safety and operate NPPs, there 

are more than 200 sub-procedures of AOPs in Korean 

APR-1400. Nowadays, some studies have been done 
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utilizing AI into NPPs as operator support systems. 

However, additional measures are needed to apply to 

actual power plants. We considered the characteristics of 

real plant variables as a steppingstone for the application 

to real power plants and modified actual power plant 

variables with simulator data in ramp time, offset, 

change-rate, and noise. 

In addition, rather than focusing on absolute data 

values, a robust and compatible abnormality diagnosis 

model was developed by adopting the behavior or trend 

of the plant variables according to abnormal conditions 

as input values. Fuzzification was performed to 

maximize the exploration into plant variable behavior, 

and in the case 6 and case 8 using FNNs, the accuracy 

was 99.03 and 94.61%, respectively. CNNs are 

obviously an artificial intelligence that is good for feature 

extraction, but it has shown that overfitting to certain 

data rather results in lower performance for compatibility. 
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