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Introduction



❑ Challenges in predicting and managing severe accidents

• Severe accidents are highly nonlinear and chaotic.

• DSA & PSA-based methods require large computational resources.

• Need to develop an Accident Management Support Tool (AMST) based on advanced computing methods, 

such as machine learning.
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Fig. 1. General structure of an AMST* 

*M. Saghafi, M. B. Ghofrani, Accident management support tools in nuclear power plants: A post-Fukushima review, Progress in Nuclear Energy 92, 2016.



Motivation

❑ There are inherent trade-offs between the ML model’s accuracy and interpretability. 
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• Deep learning models are excellent at learning the non-

linear, complex patterns of the given data. 

• However, the model directly maps input data to output 

predictions without explicitly decomposing the problem 

into interpretable subtasks.

➔ Deep learning methods have high prediction accuracy 

but lack ‘interpretability’.

➔ Need for a method that can explain/interpret the 

deep learning models

Fig. 2. Trade-offs between model accuracy and interpretability



Explainable AI (XAI)

❑ What is XAI? 
▪ A subfield of AI that focuses on creating AI models whose actions can be easily understood by humans

▪ Goal: build trust in AI systems to make them more useful across various fields
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Fig. 3. Types of interpretability methods for XAI [1]



Research Objectives

1. Explore the feasibility of integrating XAI into AMSTs.

2. Develop a model that can predict the progression of a severe accident scenario based on an 

attention mechanism, which is one of the XAI techniques. 

3. Prediction accuracy and the explainability of the proposed model will be assessed in 

comparison with the black box models. 
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Description of the 
Accident Dataset



Accident scenario

❑ Description of the accident scenario
▪ Reference reactor type: OPR1000

▪ Subsets of Total Loss of Component Cooling Water (TLOCCW) accident
• Multiple failures in the safety components lead to reactor core damage (Fig. 4)

• Various mitigation strategies are applicable (Table 1)

▪ Duration of a single accident scenario: 72 hr (=PSA mission time)

*RCP = Reactor Coolant Pump

*HX = Heat Exchanger

*HPI = High-Pressure Injection

*LPI = Low-Pressure Injection

*CSS = Containment Spray System

*MDAFW = Motor-Driven Auxiliary Feedwater

*CHP = Charging Pump
# Mitigation Strategy

SAMG-01
Steam generator (SG) external 

injection

SAMG-02
Reactor coolant system (RCS) 

depressurization

SAMG-03 RCS external injection

Table 1. Types of mitigation strategies

(OPR1000 Severe Accident Management Guidelines)

Fig. 4. Locations of component failure at OPR1000 system
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Dataset production

❑ Dataset production
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*Appendix: Examples of accident dataset
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Model Development



Model Development
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❑ Input and output structure

Fig. 6. Input and output structure of the prediction model



Model Development

❑ Model comparison: Blackbox model vs XAI model
▪ XAI model - Dual-stage Attention Recurrent Neural Network (DA-RNN)*

• Devised for multivariable time series forecasting

• Input attention – selectively weights the importance of input features

• Temporal attention – selectively weights the importance of each time step

➔ The attention weights can be an explanation for the feature importance!
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*Y. Qin, D. Song, H. Chen, W. Cheng, G. Jiang, G. Cottrell, A dual-stage attention-based recurrent neural network for time series prediction, 

International Joint Conference on Artificial Intelligence, 2017.

Fig. 7. DA-RNN architecture*



Model Development

❑ Model comparison: Blackbox model vs XAI model
▪ Blackbox model - Long Short-Term Memory (LSTM)

• A classic deep learning architecture for time series forecasting

• In our previous studies, LSTM models have shown excellent regression performances [9]. 

• The performance of the LSTM will be also evaluated for comparison with the XAI model.
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Fig. 8. Architecture of the LSTM model
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Performance evaluation

❑ Model explainability

MAAP data

XAI model

Feature importance of 

𝑋𝑖 in predicting 𝑦𝑗
(mutual information)

Feature importance of 

𝑋𝑖 in predicting 𝑦𝑗
(attention weights)

vs

Similarity
(cosine similarity)



04
Results and Discussion



Prediction accuracy

❑ Hyperparameter test
▪ Number of nodes in the LSTM unit: 8, 16, 32, 64, 128

▪ 8 to 64: RMSE decreased by a small degree

 Number of nodes in the LSTM unit does not have a 

marked influence on the model’s regression 

performance. 
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Fig. 9. MAE values for different target TH variables by the number 

of nodes in the LSTM unit. The IQR refers to the RMSE of models 

with various target TH variables.

Fig. 10. MAE by the model’s target TH variable. The IQR refers to 

the RMSE of models with various number of nodes (8, 16, 32, 64, 

128) 

❑ TH variable dependency
▪ Best vs. Worst: CTMT P vs. MAX CET

▪ The RMSE of predicting MAX CET was about 10 

times larger than that of CTMT P.

 the type of target TH variable has a significant effect 

on the models’ performance. 



Prediction accuracy

❑ Comparison of LSTM vs DA-RNN
▪ LSTM model had smaller RMSE values on average. 

▪ Thus, the prediction accuracy did not improve by employing the attention mechanism.

▪ However, the number of parameters in each model are different. 

➔ We cannot simply jump to a conclusion that LSTM model is superior.
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Model explainability

❑ Mutual Information
▪ Feature importance represents the importance of an 

input parameter X for predicting a target variable Y.

▪ Mutual information (MI): the amount of 

information obtained about one random variable by 

observing the other.

▪ Comprehends the nonlinear relationship within the 

data. (vs. Pearson, Spearman correlation)

▪ The MI values are then normalized so that their sum 

equals to one.
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Fig. 12. Heatmap of the mutual information



Model explainability

❑ Mutual Information vs Attention weights

▪ Example: Cold leg temperature
• PPS, HLT, and Max CET seems to have relatively high importance in its prediction. 

• Explanation 1) Cold leg, core exit, and hot leg all constitute the primary flow together. 

• Explanation 2) The temperatures of the primary coolant are thermo-physically correlated with its pressure (PPS). 
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Fig. 13. Boxplot of attention weights for predicting cold leg temperature, 

compared to the mutual information (gray bar)



Model explainability

❑ Mutual Information vs Attention weights
▪ Measure the cosine similarity (𝑆𝐶) between the mutual 

information matrix (𝑀𝐼) obtained from the MAAP data and 

the attention weight matrix (𝐴𝑡𝑡) obtained through the 

model training.

▪ High cosine similarity: 0.77 ~ 0.98

➔ The proposed model learns the feature importance of 

the training data and embodies it as a form of 

attention weight.

▪ RV WL, Max CET: worst prediction performance, but the 

cosine similarity > 0.9. 

➔ even if the attention weight of the model is well 

explained in phenomenological terms, the prediction 

accuracy of the model may not improve.
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Summary

Explainability of the DA-RNN model

• By learning the attention weight during the training process, the model searches for the importance of 

each input feature.

• The attention weights show a similar distribution with the mutual information of the original MAAP 

dataset.

Feasibility of the XAI model as an AMST predictor

• The XAI concept is expected to serve as a lubricant in applying AI models to Accident Management

and Support Tool (AMST) development.

• Due to the ‘accuracy vs interpretability trade-off’ of deep learning models, developing an accurate

XAI model is especially important.

1

2

3 Comparison between a black-box vs XAI model

• Attention-based models do not show a noticeable improvement in prediction accuracy compared to 

traditional black box models (LSTM), but they still have a reasonable accuracy.

• Thus, it is possible to develop an AI-based AMST predictor model with both explainability and high 

accuracy. 
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Limitations and Further Works

1

2

3

Enhance the predictive accuracy without compromising the model’s interpretability.

This approach aims to achieve a balance between the explainability and accuracy of

the XAI model.

Investigate other index for representing the explainability of the models.

The potential of applying other XAI techniques to predict severe accidents will be

assessed. (e.g., Grad-CAM, SHAP)
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Q & A



❑ Example of accident dataset
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Fig. 27. Progression of TH variables for 72 hours in the produced accident scenarios. 

Primary system pressure, reactor vessel water level, hot leg temperature (from left to right)

Appendix: Accident dataset



Appendix: Post-processing of MAAP dataset
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Process the time series datasets into 
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❑ Example of accident dataset

Fig. 28. Post-processing of MAAP-generated datasets



Forecasting mechanism

❑ Forecasting mechanism
▪ The model forecasts the 72-hour accident scenario using the ‘rolling window forecasting’ method.

▪ Using the plant’s states at the previous five time steps, the model predicts the plant’s state at the next time step.

▪ This calculation is repeated 72 times → completes a time series of 𝑡 = 0 to 𝑡 = 72 hr.
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Fig. 12. Schematic of rolling window method in

forecasting the accident scenario.



Training method

❑ Training method
▪ Divide the accident datasets into train (70%), validation (20%), test (10%) datasets.

▪ Criteria for stop training: validation loss does not decrease for 50 epochs
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Fig. 11. Training procedure
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