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Introduction




Motivation

O Challenges in predicting and managing severe accidents
« Severe accidents are highly nonlinear and chaotic.
 DSA & PSA-based methods require large computational resources.

Need to develop an Accident Management Support Tool (AMST) based on advanced computing methods,
such as machine learning.

AMST

My focus

Accident Decision Accident
initiator Tracker Predictor making management
occurrent SUppOI‘t measures
Identification of Prediction of Support the
accident initiator and accident progression determination of
diagnosis of PDS mitigation action

and its effectiveness
Fig. 1. General structure of an AMST*

@NPNP *M. Saghafi, M. B. Ghofrani, Accident management support tools in nuclear power plants: A post-Fukushima review, Progress in Nuclear Energy 92, 2016. 4
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Motivation

O There are inherent trade-offs between the ML model’s accuracy and interpretability.

High
» Deep learning models are excellent at learning the non-
Degplearning linear, complex patterns of the given data.
Ensembles «  However, the model directly maps input data to output
SHppaRarEdionMacking predictions without explicitly decomposing the problem
) BETEIRHBHRESS into interpretable subtasks.
g Generalized additive models =>» Deep learning methods have high prediction accuracy
% K-nearest neighbors but laCk ‘lnterpretablllty’.
= —
——_— =>» Need for a method that can explain/interpret the
deep learning models
Linear/logistic regression
Rule-based learning
Low v

Low Model interpretability High

Source: DPhi, “Importance of Human Interpretable models & Explainable Al,” video featuring Dipanjan (D)) Sarkar, 29:02,
February 13, 2021.

Fig. 2. Trade-offs between model accuracy and interpretability
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Explainable Al (XAl)

Input

0 What is XAI?
= Asubfield of Al that focuses on creating Al models whose actions can be easily understood by humans
= Goal: build trust in Al systems to make them more useful across various fields

Create White-Box /
Interpretable Models
(Intrinsic)

Explain Black-Box /
Complex Models

(Post - Hoc)
Purposes of
Interpretability
Local vs Global G

Enhance Fairness of a]

Local: Explain a Single
Prediction

Global: Explain the
Model

overall model \

-
Test Sensitivity of}

Predictions

Tabular &

Text Model Specific: Can be

Data Types applied to a single model
Model Specific or group of models

Vs
Model Agnostic

Model Agnostic: Can be
applied to any model

Fig. 3. Types of interpretability methods for XAl [1]
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Research ODbjectives

1. Explore the feasibility of integrating XAl into AMSTSs.

2. Develop a model that can predict the progression of a severe accident scenario based on an
attention mechanism, which is one of the XAl techniques.

3. Prediction accuracy and the explainability of the proposed model will be assessed in

comparison with the black box models.

Blact Box Al
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Description of the
Accident Dataset




Accident scenario

O Description of the accident scenario
= Reference reactor type: OPR1000

= Subsets of Total Loss of Component Cooling Water (TLOCCW) accident
»  Multiple failures in the safety components lead to reactor core damage (Fig. 4)

«  Various mitigation strategies are applicable (Table 1)
= Duration of a single accident scenario: 72 hr (=PSA mission time)

*RCP = Reactor Coolant Pump
*HX = Heat Exchanger e
*HPI = High-Pressure Injection

*LPI = Low-Pressure Injection

*CSS = Containment Spray System

*MDAFW = Motor-Driven Auxiliary Feedwater
*CHP = Charging Pump

Table 1. Types of mitigation strategies
(OPR1000 Severe Accident Management Guidelines)

# ‘ Mitigation Strategy
SAMG-01 | Steam generator (SG) external
injection
SAMG-02 Reactor coolant gystfem (RCS)
depressurization
SAMG-03 RCS external injection

pump -
" CSS pump-

| PO

A LB )
. = LP1 pumptis 88 éﬂﬂ
Charging =" hpr zum% J

e Cormarment
Soemy

Fig. 4. Locations of component failure at OPR1000 system
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O Dataset production

Fail mostly at t = 1hr

Fail or not?
Fail or not?
Fail or not?
Fail or not?
Fail or not?
Fail or not?

Activate or not?
Activate or not?

Activate or not?

© NPNP

Component failure/
SAMG activation

RCP seal LOCA

I
X

HPI pump
LPI pump

CSS pump
MDAFW pump

CHP
SAMG-01
SAMG-02

Dataset production

11,000
. MAAP 5.03
— accident Code
scenarios
T e N St
C_ = -ED Pressure C‘ '—I —- )
v Pressurzer (Separate 0
| | Region from RCS Nodakzation) | |
I I bt (/5
I - [Pzst pll
1NN (Priessuire . I
011111111 Primary |
| i I |pzR wE system
o : i : e pressure
I T Rew
: | 20V Aocove fome Picte
= L s+ thvel
| RP Pierum 17‘ :
Hotdeg T e
= AN 4
P [ - 4 . < |20
1 coiisg | | o s
= EEE
*CTMT = Containment T

*RV = Reactor Vessel

\ Core Exit T

Fig. 5. Location of TH variables at OPR1000

TH variables

Primary system pressure
Cold leg temperature
Hot leg temperature
RV water level
SG pressure
SG water level
Max. core exit temperature
Containment pressure
Pressurizer pressure

Pressurizer water level

*Qbservable from the MCR and
SAMG supervisory variables

*Appendix: Examples of accident dataset
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Model Development




Model Development

O Input and output structure

© NPNP

TH
variables
TH
model; —»
variables -
models
modely
maodely —"'-
Component .
failure
— modelyg _"'-
SAMG -{

t—4t—-3t—-2t—-1 t t+1

Fig. 6. Input and output structure of the prediction model
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Model Development

O Model comparison: Blackbox model vs XAl model

© NPNP

XAl model - Dual-stage Attention Recurrent Neural Network (DA-RNN)*
» Devised for multivariable time series forecasting
* Input attention — selectively weights the importance of input features
«  Temporal attention — selectively weights the importance of each time step
=>» The attention weights can be an explanation for the feature importance!

Attention weights d;_1
b ' — h!1—1 h l
: . B p . _ .
T = -1 o — T ] A
. "og ety
N A K — — o —| | R — a - x; - thy h
' ! Poo2 ' |h
: . Yo .

; _— —_— 2—0— —_— z:_’l‘ [ ) et 2 2 Temporall h
'.\“J\J\. X’ Input €t a &— az % i %, —[LSTM™ h e =l |—pt =
| 1 Attn - — X, 0
; ; ¥ : . M )
E I E n ' i,hT—

. :xi i~ ﬁ T T
"-./'\J\,J" G — ef'—| | —ia'— X — a' -x[ Xy —=|LSTM L -l — —f3;
—/ o H.
L . Temporal
Driving series Input New input Encoder Softmax
Soft P .
of length T attention Layer ormax attime ¢ attention Layer

(a) Input Attention Mechanism

Fig. 7. DA-RNN architecture*

& —(GE—,
td,
ld;_q
—C_1— *—}’r-l
ld,
idT—l
Cr-1—|LSTM}~—V7_,
Ir
Decoder

(b) Temporal Attention Mechanism

*Y. Qin, D. Song, H. Chen, W. Cheng, G. Jiang, G. Cottrell, A dual-stage attention-based recurrent neural network for time series prediction,

International Joint Conference on Atrtificial Intelligence, 2017.
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Model Development

O Model comparison: Blackbox model vs XAl model
= Blackbox model - Long Short-Term Memory (LSTM)
» Aclassic deep learning architecture for time series forecasting
* Inour previous studies, LSTM models have shown excellent regression performances [9].
»  The performance of the LSTM will be also evaluated for comparison with the XAl model.

Fully connected layer

LSTM layer 1 LSTM layer 2
he

Sigmoid
activation

I x
e oy || = |4 rd e

ot Rl ] 1

4
+ 1 [\
4 o) ‘
I J
J

Fig. 8. Architecture of the LSTM model
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Performance evaluation

O Model explainability

Feature importance of

MAAP data X; in predicting y; III.
(mutual information)

Feature importance of
LCARUCLCIINL g X; in predicting y;

(attention weights)

Similarity
(cosine similarity)
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Results and Discussion




O Hyperparameter test

< NPNP

=  Number of nodes in the LSTM unit: 8, 16, 32, 64, 128

Prediction accuracy

= 81to 64: RMSE decreased by a small degree

— Number of nodes in the LSTM unit does not have a

marked influence on the model’s regression

performance.

RMSE by number of nodes

0.05

0.04 1

0.03 -

RMSE

0.02

o

IQR of RMSE
outlier

O

0.01 -

0.00 . T T
8 16 32
Number of nodes

Fig. 9. MAE values for different target TH variables by the number
of nodes in the LSTM unit. The IQR refers to the RMSE of models

with various target TH variables.

64

128

O TH variable dependency
= Bestvs. Worst: CTMT P vs. MAX CET
= The RMSE of predicting MAX CET was about 10
times larger than that of CTMT P.
= the type of target TH variable has a significant effect
on the models’ performance.

RMSE by target TH variable

0.05
IQR of RMSE
o outlier
0.04 —
o 0.03
%)
E002 o
== -
== o
e
0.00 T T T T T T T T T T
& & && & L &S
& T ¢ &
& < g
Target TH variable

Fig. 10. MAE by the model’s target TH variable. The IQR refers to
the RMSE of models with various number of nodes (8, 16, 32, 64, 17
128)
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Prediction accuracy

O Comparison of LSTM vs DA-RNN

NPNP

LSTM model had smaller RMSE values on average.
Thus, the prediction accuracy did not improve by employing the attention mechanism.
However, the number of parameters in each model are different.

=> We cannot simply jump to a conclusion that LSTM model is superior.

Comparison of RMSE for each TH variable

0.045
0.040
0.035
0.030
5 0.025
= 0.020

0.015

0005 "' i‘
ol ul

0.000 -

S & > @ o NS
R O () A\

mLSTM M Attention (N=128)

6
S
+

Fig. 11. RMSE of LSTM models and attention-based models
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Model explainability

1 Mutual Information

= Feature importance represents the importance of an Mutual information of TH variables
input parameter X for predicting a target variable Y. PPS %68 4 5701 5652 [ G52
= Mutual information (MI): the amount of
information obtained about one random variable by coldies T
observing the other. Hoslegit
= Comprehends the nonlinear relationship within the
data. (vs. Pearson, Spearman correlation) RVWL
=  The MI values are then normalized so that their sum : o8
equals to one. £
é SG WL
Max CET { - ) ! ; : : } 2.944
I(X; Y) = Z Z p(x y) log pl()i)p}(]z,) e 652 |3 : 5736 5736 [ 6295 [EHL

YEY xeX
PZR P

/AR 3.137 3.125 3.112

TH variable

Fig. 12. Heatmap of the mutual information
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Model explainability

O Mutual Information vs Attention weights
= Example: Cold leg temperature
* PPS, HLT, and Max CET seems to have relatively high importance in its prediction.
» Explanation 1) Cold leg, core exit, and hot leg all constitute the primary flow together.
Explanation 2) The temperatures of the primary coolant are thermo-physically correlated with its pressure (PPS).

Target variable: CLT

I attention
—— mutual information
0.20
g3
.-y o
T |
2 0.15 T
E | —
Eha — —]
< o . o
0.05 -
000 1 T T T T T T T T
= A q{\’ 2 KNG A p < &
S G X R 2
& T o S Y &

Input featuies

Fig. 13. Boxplot of attention weights for predicting cold leg temperature,
compared to the mutual information (gray bar)

© NPNP
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Model explainability

O Mutual Information vs Attention weights
= Measure the cosine similarity (S.) between the mutual 1.00

~
information matrix (MI) obtained from the MAAP data and | Perfectagreement .
the attention weight matrix (Att) obtained through the 008 =] — T
model training. | - B =
Sc(MI, Att) = ML, Att) g * ’ T
o 1M1l [|Att ][ 2 090 ’ |
= High cosine similarity: 0.77 ~ 0.98 § - .
=>» The proposed model learns the feature importance of '8~ l
the training data and embodies it as a form of © i
attention weight. 0.80 | [ IQR of cosine similarity
‘ outlier J_
= RV WL, Max CET: worst prediction performance, but the 07 L . . . . . . . . .
cosine similarity > 0.9. N O I S SN P S S SR
i : i : O Y 2o SRR\
=> even if the attention weight of the model is well OIS 9y @'5}0 6\@ Qv &
explained in phenomenological terms, the prediction Target variable
accuracy of the model may not improve. Fig. 14. Cosine similarity between attention weights and mutual
information. The IQR refer to the range of cosine similarity of models
with various number of nodes (8, 16, 32, 64, 128).
F‘NPNP 21
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Summary

0 Feasibility of the XAl model as an AMST predictor

« The XAl concept is expected to serve as a lubricant in applying Al models to Accident Management
and Support Tool (AMST) development.

» Due to the ‘accuracy vs interpretability trade-off’ of deep learning models, developing an accurate
XAI model is especially important.

e Explainability of the DA-RNN model

« By learning the attention weight during the training process, the model searches for the importance of
each input feature.

» The attention weights show a similar distribution with the mutual information of the original MAAP

dataset.
e Comparison between a black-box vs XAl model

» Attention-based models do not show a noticeable improvement in prediction accuracy compared to
traditional black box models (LSTM), but they still have a reasonable accuracy.

» Thus, it is possible to develop an Al-based AMST predictor model with both explainability and high
accuracy.

‘© NPNP s
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Limitations and Further Works

Enhance the predictive accuracy without compromising the model’s interpretability.
This approach aims to achieve a balance between the explainability and accuracy of

the XAl model.

Investigate other index for representing the explainability of the models.

The potential of applying other XAl techniques to predict severe accidents will be
assessed. (e.g., Grad-CAM, SHAP)

Grad-CAM

24
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Appendix: Accident dataset

O Example of accident dataset
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Fig. 27. Progression of TH variables for 72 hours in the produced accident scenarios.
Primary system pressure, reactor vessel water level, hot leg temperature (from left to right)
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Appendix: Post-processing of MAAP dataset

O Example of accident dataset

< NPNP

t=0
Original t =5 min
MAAP dataset t=10min

t=72hr

TH variables Component failure SAMG
A A

" V—H

X 12,121 scenarios

MinMaxScaler
(normalization)

Process the time series datasets into
time steps of At = 60 min

Fig. 28. Post-processing of MAAP-generated datasets
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Forecasting mechanism

O Forecasting mechanism

© NPNP

= The model forecasts the 72-hour accident scenario using the ‘rolling window forecasting” method.

= Using the plant’s states at the previous five time steps, the model predicts the plant’s state at the next time step.

= This calculation is repeated 72 times — completes a time series of t = 0 to ¢t = 72 hr.

Accident initiation (t = 0)

Whole accident scenario

- Data used for the prediction Prediction of the next
of the next time step time step

Fig. 12. Schematic of rolling window method in
forecasting the accident scenario.
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O Training method

Training method

= Divide the accident datasets into train (70%), validation (20%), test (10%) datasets.
= Criteria for stop training: validation loss does not decrease for 50 epochs

i i MAAP
Selection of accident 5 03
scenarios )
code
Training set Validation set Test set
.. Test
Model training performance

Fig. 10. Dividing MAAP datasets into train, validation,

test datasets
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\ < MAAP data >
|

\ Preprocessing of data
\ Construct model architectures
\ Train the model with MAAP data

!

loss did not decrease for 50
epochs or epochs > 500

Stop training

l

Performance evaluation

Fig. 11. Training procedure
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