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Introduction

• 2016년 – 2017년 (핵보유시도)
 4차핵실험 (16.1월)
 5차핵실험 (16.9월)
 6차핵실험및 ICBM 발사 (17.9월)

• 2018년 (북핵일부합의)
판문점선언 (4.27)
싱가포르, 북미정상회담공동성명 (6.12)
평양공동선언 (9.19)

• 2019년
하노이,제2차북미정상회담 (2.27-28) -> 결렬

• 2021년이후, 영변핵시설재가동
Figure 1. 북미협상결렬[1]

[1] BBC KOREA (Oct. 6, 2019). “북미협상: 북미비핵화실무협상에엇갈린양국입장”. https://www.bbc.com/korean/news-49949678
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Introduction

Figure 2. 북, 영변주요핵시설[2]

[2] 김지은 (Sep. 19, 2019). ““영구폐기뜻”영변핵시설, 북핵개발의심장”. 한겨레. https://www.hani.co.kr/arti/politics/defense/862869.html

• The Nyongbyon nuclear scientific research center has the IRT-2000 

research reactor, a 5 MWe reactor, and a 100 MWth reactor.
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Introduction

Figure 3. Development of pipelines at the ELWR from 2010 to 2013[3]
[3] Sulgiye Park and Allison Puccioni (Jan. 24, 2024). “North Korea’s Pursuit of an ELWR: Potential Power in Nuclear Ambitions?”. 38NORTH. https://www.38north.org/2024/01/north-koreas-pursuit-of-an-elwr-potential-power-in-nuclear-ambitions/

• The Experimental Light Water Reactor (ELWR) was recently 

constructed at the Nyongbyon site in the 2010s.
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Introduction

• This new ELWR reportedly began operations in October 2023.
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Figure 3. Thermal image over Yongbyon Nuclear Scientific Research Center from 
October, 2023.

Blue (lower heat) -> Red (higher heat)[3]

[3] Sulgiye Park and Allison Puccioni (Jan. 24, 2024). “North Korea’s Pursuit of an ELWR: Potential Power in Nuclear Ambitions?”. 38NORTH. https://www.38north.org/2024/01/north-koreas-pursuit-of-an-elwr-potential-power-in-nuclear-ambitions/



Reactor Modeling
• The 5 Megawatt-electric Reactor

- Power: 25 MWth
- Type: Magnox (Graphite-moderated gas-cooled reactor)
- Fuel: 50 tons, metallic natural-uranium (235U 0.72 wt%)
- From 1986, producing Weapon-Grade Plutonium

Operation and 
shutdown

Residence;
avg. burnup

Amount.Spent 
fuel Removed 

Reprocess 
Duration 

Separated WG-
Pu 

Op. 1986–1989 
Shutdown 1989 (70–
100 days) 

3 years (Unknown) Unknown Unknown Less than or equal to 
2 kg 

Op. 1989–1994 
Shutdown 1994 

Unknown (~650 
MWd/t) Full core: 50 tons U 2003.01–06 20–30 kg 

Op. 2003–2005 
Shutdown 2005 (~70 
days) 

2 years (330 MWd/t) Full core 2005.06–12 10–14 kg 

Op. 2005–2007 
Shutdown July 2007 

1+ year (Less than 
200 MWd/t) Full core 2009 ~8 kg 

Op. 2013–2015 
Shutdown 2015 

2 years (intermittent: 
Uncertain burnup) Likely full core 2016 5.5–8 kg 

Op. 2016 In Reactor 

Table I: Operation history of 5 MWe Reactor and WG-Pu production estimations[4] 

total 45 ~ 62 kg
7

[4] Hecker S.S., Braun C., Lawrence C. (2016). “North Korea’s Stockpiles of Fissile Material”. Korea Oberver 47 (4), 721-749



Reactor Modeling
• The new Experimental Light-Water Reactor

- Power: 100 MWth
- Type: VVER-440 (Russia’s PWR using hexagonal fuel bundles)
- Fuel: 4 tons, 3.5 wt% enriched UO2

[5]

- Constructed since 2010 & Tested the cooling water system (July 2022)
- Begun operating since October 2023

Figure 4. A significant amount of water discharge from the ELWR
(Left: October 4, 2023 / Right: December 10, 2023)[6]

8[5] Hecker S.S. (Dec. 20, 2010). “Redefining denuclearization in North Korea”. Bulletin of the Atomic Scientists. https://thebulletin.org/2010/12/redefining-denuclearization-in-north-korea-2/
[6] David Albright (Jan, 2024). North Korea’s ELWR: Finally Operational After a Long Delay. ISIS report



Computational Method

• Oak Ridge Isotope GENeration (ORIGEN) module in SCALE code
• Point-depletion (0-D) code that calculate time-dependent concentrations, 

activities, and radiation source terms for a large number of isotopes 
simultaneously generated or depleted by neutron transmutation, fission, and 
radioactive decay

• Neutron spectrum-dependent libraries are created from interpolation of 
existing  reactor libraries in SCALE code, using Automated Rapid Processing 
(ARP) module.

• Depletion calculations are used the Chebyshev Rational Approximation Method 
(CRAM) in solving the Bateman equation.

• For post-processing, OPUS module shows calculated isotopics and spectra to be 
sorted, ranked, and converted to other units.
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Results

• Weapon-Grade Plutonium (WG-Pu) estimation

• WG-Pu is defined as plutonium with a high content of the fissile isotope (239Pu)

• 𝐏𝐏𝐏𝐏 𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪𝐪 = fissile Pu isotopes mass (239Pu)
total Pu isotopes mass (total Pu)

 >  93 wt%

• The Pu quality monotonically decreases due to the preferential fission 
reactions of 239Pu.

VVER Magnox

Figure 5. Comarison of plutonium production and quality over depletion by reactor types
(Left: VVER / Middle: Magnox / Right: Pu quality)

116 1390

Pu quality
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Results

Table II: Plutonium Production and Weapon Potential• Depletion time
 VVER: 116 days
 Magnox: 1390 days

• Burnup
 VVER: 2900 MWd/tU
 Magnox: 695 MWd/tU

• Pu production
 VVER: 5.94 kg
 Magnox: 30.4 kg

• Grams of WG-Pu per MWd
 VVER: 0.512 g/MWd
 Magnox: 0.876 g/MWd

VVER Magnox
Thermal power
(MWt) 100 25
Initial mass of uranium
(tons) 4 50

Depletion time at which Pu 
quality becomes 93 wt%

(days)
116 1390

Burnup
(MWd/tU) 2900 695
WG-Pu production
(kg) 5.94 30.4

Grams of WG-Pu per MWd
(gPu/MWd) 0.512 0.876

Separated WG-Pu
(kg) 3.74 ~ 4.28 19.2 ~ 21.9

Annual WG-Pu production
(kg/year) 11.8 ~ 13.5 5.04 ~ 5.75

Number of nuclear weapon 
potentials

(number/year)
2.95 ~ 4.49 1.26 ~ 1.92
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Table II: Plutonium Production and Weapon Potential

VVER Magnox
Thermal power
(MWt) 100 25
Initial mass of uranium
(tons) 4 50

Depletion time at which Pu 
quality becomes 93 wt%

(days)
116 1390

Burnup
(MWd/tU) 2900 695
WG-Pu production
(kg) 5.94 30.4

Grams of WG-Pu per MWd
(gPu/MWd) 0.512 0.876

Separated WG-Pu
(kg) 3.74 ~ 4.28 19.2 ~ 21.9

Annual WG-Pu production
(kg/year) 11.8 ~ 13.5 5.04 ~ 5.75

Number of nuclear weapon 
potentials

(number/year)
2.95 ~ 4.49 1.26 ~ 1.92



Results

• Grams of WG-Pu per MWd
 VVER: 0.512 g/MWd
 Magnox: 0.876 g/MWd
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Figure 6. Institute for Science and International Security report[7]

[7] David Albright (Oct 7, 2015). North Korean Plutonium and  Weapon-Grade Uranium Inventories. ISIS report



Results

• *Seperated Pu
 VVER: 3.74 ~ 4.28 kg
 Magnox: 19.2 ~ 21.9 kg

• **Annular Pu production
 VVER: 11.8 ~ 13.5 kg/year
 Magnox: 5.04 ~ 5.75 kg/year

• ***Number of nuclear weapon 
potentials
 VVER: 2.95 ~ 4.49 #/year
 Magnox: 1.26 ~ 1.92 #/year

* Pu production × Capacity factor 70 ~ 80 % × Reduction in output (10 %) 
** Separated Pu × 365 days ÷ Depletion time
*** Annular Pu ÷ (3~4 kg Pu per weapon)
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Table II: Plutonium Production and Weapon Potential

VVER Magnox

Grams of WG-Pu per MWd
(gPu/MWd) 0.512 0.876

Separated WG-Pu
(kg) 3.74 ~ 4.28 19.2 ~ 21.9

Annual WG-Pu production
(kg/year) 11.8 ~ 13.5 5.04 ~ 5.75

Number of nuclear weapon 
potentials

(number/year)
2.95 ~ 4.49 1.26 ~ 1.92



Results

• Plutonium production vs depletion time
 At one operation, the Magnox has a more Pu production than the VVER.
 During the same operation time, the VVER has a higher Pu production rate than the 

Magnox. (~130 % higher)

Figure 7. Comarison of plutonium production over depletion time by reactor types
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Conclusions

ELWR 5 MWe reactor

Reactor power
(MWth) 100 25

Initial uranium mass
(tons) 4 50

Grams of WG-Pu per MWd
(gPu/MWd) 0.512 0.876
Number of nuclear weapon 

potentials
(number/year)

2.95 ~ 4.49 1.26 ~ 1.92

ISIS’s estimation
(number/year) 5 ~ 6

• The construction of a new Experimental Light Water Reactor (ELWR) by North 
Korea continues to pose a significant nuclear proliferation threat.

• In this work, the plutonium production capacity for this ELWR was estimated, 
assuming it is based on the Russian VVER reactor design.

• It was estimated that North Korea's existing Magnox-type reactor can produce 
1.26 to 1.92 nuclear weapons per year, while the ELWR can produce 2.95 to 
4.49 nuclear weapons per year.

• This result undervalues from the estimation provided in the ISIS report.
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Conclusions
• Limitations
 Light Water Reactors (LWRs) are generally not well-suited for plutonium production.

• Future works
 This work focused on point-depletion calculations and did not consider neutron leakage 

and operational periods.
 Incorporating 3D modeling will be needed to attain more accurate results, which may 

lower the estimated WG-plutonium production capacity.
 Accounting for reactor cooling periods will also be necessary.

<Siegfried S. Hecker. (December 20, 2010). “Redefining denuclearization in North Korea”, Bulletin of the Atomic Scientists>

Figrue 8. Pu production over burnup per initial uranium ton by reactor types[8]

17
[8] G.H.Park (2022). “Evaluation of Potential Weapon-Grade Plutonium Production for Scenarios of Varying Uranium Enrichment for the MAGNOX Type Reactor”. Master’s Thesis, Hanyang University



Future work (Doing)
• 3D Modeling
 We are using Monte-Carlo code Serpent2 for full-core 3D analysis.

2-D Fuel bundle 3-D Whole core

0-D
ORIGEN

Figure 9. VVER-440 Design parameters[9]

18
[9 IAEA (Nov, 1995). “In-core fuel management code package validation for WWERs”. IAEA-TECDOC-847



Future work (Doing)
• 3D Modeling
 We aim for the similar R/H of the active 

core and linear heat densities.
 Rod number per bundle, rod diameter, rod 

pitch, and bundle pitch are same.
 To achieve the similar R/H, the number of 

fuel bundle is determined while the same  
number of fuel rods per bundle.
 Considering the similar R/H and linear heat 

density simultaneously, the active core 
height are decided.

VVER-440 ELWR

Thermal power
(MWt) 1375 100

Initial uranium mass
(tons) ~ 37 3.93

Rod number per 
bundle 126 126

Number of fuel 
bundles 312 60

Active core radius
(cm) 137 60

Active core height
(cm) 246 110

Radius/Height of 
core 0.555 0.548

Linear heat density
(W/cm) 142 120

Table III: Design parameters of the VVER-440 and ELWR

Figure 10. Core configurations of VVER-440[9] and ELWR
(Left: VVER-440 / Right: ELWR)

137 60
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Future work (Doing)

Figure 11. Comarison of plutonium production over depletion time by calculation types

Pu quality = 93 wt% 0-D
ORIGEN

3-D
Serpent

Depletion time
(days) 117 109

Pu production
(kg) 6.006 5.086

Number of nuclear 
weapon potentials

(number/year)

2.95 ~ 
4.49

2.68 ~ 
4.08

• 0-D vs 3-D calculations
 Due to the more computational cost of the 3-D calculation compared to 0-D depletion 

calculation, the 3-D calculation was performed with a longer depletion time step.
 The 3-D calculations result in a smaller amount of plutonium (Pu) production, with 

approximately a 15.3% difference compared to the 0-D calculations.
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