Sorption and Diffusion of Non-radioactive Isotopes under Oxidizing Disposal Environment

〈 산화환경 처분장 조건에서 비방사성 동위원소의 수착, 확산 평가 〉

Hyojoo Kim^a, Jaeeun Kang^a, Jae-Kwang Lee^b, Jang-Soon Kwon^b, Wooyong Um^{a*}

^aPohang university of Science and Technology, Chungam-ro 77, Namgu, Pohang, Republic of Korea. ^bKorea Atomic Energy Research Institute, Daedeok-daero 989–111, Yuseong-Gu, Daejeon, Republic of Korea, 34057 <u>*wooyoungum@postech.ac.kr</u>

Contents

I	Introduction	03P
Π	Material and Method	06P
ш	Result and Discussion	10P
	 Characterization 	
	 Retardation by Sorption 	
	 Retardation of RN by Diffusion 	
	 Conclusion 	

Introduction

01 Deep geological disposal based on multi-barrier design

- Deep geological storage is widely considered as the most safe and realistic solution for high-level radioactive waste.
- Korea has decided to introduce the concept of an multi-barrier system for deep disposal at a depth of 500 m underground.
- The geological repository utilizes a multi-barrier system comprising engineering (e.g., buffer and concrete) and natural barriers (e.g., granitic rock) to mitigate the release of radionuclides into the terrestrial ecosystem.
- Therefore, in order to evaluate the safety of deep disposal facilities, understanding of the transport behavior of nuclides in each barrier are critically required.

bedrock

final repository

Material & Method

01 Materials

Solid Materials

Solid MaterialsSorptionDiffusionCa-bentonite
(Bentonil-WRK)• Used as received (without pre-equilibration)• Compacted specimen with thickness 7mm
• Density 1.6 g/cm³, Porosity 37 %Rock
from DB-2 (~ 800 m #140)• Crushed (75~150 µm) & washed
• Pre-equilibrated with groundwater (3d)• sliced core with thickness 3mm
• Density 2.61 g/cm³, Porosity 0.222 %

Groundwater & Target nuclides

Synthetic groundwater

KURT D	B-3	Synthetic	GW
Composition	mg/L	Chemicals	mg/L
Na ⁺	37.9	Mg(OH) ₂	0.696
Ca ²⁺	5.70	KCI	0.629
K+	0.33	Na ₂ SO ₃ 9H ₂ O	35.483
Mg ²⁺	0.29	CaSO ₄	8.220
SiO ₂	7.50	NaCl	2.458
HCO ₃ -	79.3	Ca(OH) ₂	6.064
Cl-	1.79	NaHCO ₃	109.183
SO4 ²⁻	5.80	NaF	1.402
F⁻	8.10	HF	7.380
Temp (°C)	14.8		25
рН	9.05		8.14
Eh (mV)	-438		426
DO (mg/L)	0.05		
EC (µS/cm ²)	196		

State of the second second second		and the second se	
5 6 6			-
Quality setting	the states of	an in the second second	
			- Alter
aller aller	2		
N.	an an an an an an an an	Star Coll	1 3
C. Comment			c from a

+ Target Nuclides

• Cs, Nb, Ni, Pd, Zr, Sn, C, Cl, I, Tc, Se (POSTECH)

box#140

• Sr, Ra, Ac, Am, Cm, Np, Pa, Pu, Th, U (KAERI)

8

Sorption test

Distribution

coefficient, K_d

Nuclides	Initial co	onc. (M)	s/s ratio	Apolycic	
	Bentonite	Granite	Bentonite	Granite	Allalysis
Cs	7.32×10 ^{-5 (10 ppm)}	7.95×10 ^{-5 (10 ppm)}	5	50	
Ni	3.55×10 ^{-7 (20 ppb)}	1.97×10 ^{-7 (11 ppb)}	1	1	-
Zr	1.26×10 ^{-7 (11 ppb)}	1.08×10 ^{-7 (10 ppb)}	5	5	-
Pd	3.38×10 ^{-8 (4 ppb)}	3.60×10 ^{-8 (4 ppb)}	5	5	ICP-MS
Sn	3.31×10 ^{-8 (4 ppb)}	2.84×10 ^{-8 (3ppb)}	1	1	-
Nb	5.63×10 ^{-8 (5 ppb)}	4.66×10 ^{-8 (4 ppb)}	50	50	-
Тс	1.48×10 ^{-7 (15 ppb)}	1.48×10 ^{-7 (15 ppb)}	100	100	-
С	1.03×10 ^{-2 (123 ppm)}	9.48×10 ^{-3 (113 ppm)}	50	50	TOC
CI	2.77×10 ^{-3 (98 ppm)}	2.78×10 ^{-3 (98 ppm)}	10	10	
	6.06×10 ^{-8 (8 ppb)}	5.76×10 ^{-8 (7 ppb)}	5	5	
Se	4.56×10 ^{-5 (3.8 ppm)}	4.72×10 ^{-5 (3.8 ppm)}	5	50	ICP-MS

The solid/liquid ratio and Initial concentration was determine according to the adsorption capacity of the nuclides.

 $K_d = \frac{C_0 - C_{eq}}{C_{eq}} \frac{V}{M}$

C₀ (mol/m³ or Bq/m³): Initial concentration of nuclides

 C_{eq} (mol/m³ or Bq/m³): equilibrium concentration of nuclides in liquid phase after equilibrated with solid phase V (mL): volume of groundwater, M (g): mass of solid phase

Experimental Method

Nuclides	Initial conc. (M)	Analysis	Be	ntonite Granite	Bentonite	Granite
Cs	7.52×10 ^{-4 (100 ppm)}					TTATT
Ni	1.70×10 ^{-7 (10 ppb)}		Source + GW	GW		A PART I
Zr	1.10×10 ^{-7 (10 ppb)}					
Pd	4.70×10 ^{-8 (5 ppb)}	ICP MS			A Marine Marine	
Sn	4.21×10 ^{-8 (5 ppb)}					
Nb	5.38×10 ^{-8 (5 ppb)}					
Tc	1.48×10 ^{-7 (10 Bq/mL, 15 ppb)}		C1		2	
С	1.64×10 ^{-3 (100 ppm)}	TOC			•	
CI	2.82×10 ^{-1 (1000 ppm)}				D _{mol} • D _{mol} + effect of p	orous media = D _p
	7.88×10 ^{-3 (1000 ppm)}			X_max	D _n + effect of s	sorption $= D_{a}$
Se	3.50×10 ^{-5 (5 ppm)}	ICP MS	Diffusion area	Diffusion length	2 p offoot of c	

Diffusion coefficient

Time Lag method

• D_a : Apparent diffusion coefficient

Fick's 2nd law
$$\rightarrow \qquad \frac{Q}{A} = \frac{D_a \alpha C_0}{L} t - \frac{\alpha C_0 L}{6} \qquad D_a = \frac{L^2}{6t_e} \qquad D_a = \frac{D_A}{(1 + \frac{D_a}{2})}$$

Q/A : cumulative ion transmission per unit area of the specimen C_0 : concentration of nuclide in concentration cell L : thickness of porous specimen, α : capacity factor, t_e : elapsed time ρ_b : bulk density, θ : porosity

• D_p: Pore diffusion coefficient

$$D_p = \frac{D_{mol}}{G} \qquad D_{mol} = \frac{RT}{F^2} \frac{\frac{1}{n^+} + \frac{1}{n^-}}{\frac{1}{\lambda^+} + \frac{1}{\lambda^-}}$$

(Nernst-Haskell equation)

 D_{mol} : molar diffusion coefficient n: ion charge, λ : ionic conductivity

K_d : distribution coefficient (sorption)

 $\rho_{\rm b}$: bulk density, θ : porosity

Result & Discussion

- Characterization
- Retardation by Sorption
- Retardation of RN by Diffusion
- Conclusion

S: Smectite

Intensity

3

9

M: Muscovite

자료 포스텍 첨단원자력공학부 원자력환경연구실 11

MX-80

67.4

21.2

4.1

1.5

2.6

0.6

<mark>2.3</mark>

0.2

_

0.1

<mark>2.78</mark>

3.18

0.68

0.55

0.52

0.09

—

Mineralogy

X-ray diffraction (XRD)

Pov	vder	Compacted	specimen
Surface area	Particle density	Bulk density	Porosity
59.1 m²/g	2.548 g/cm ³	1.6 g/cm ³	37 %

Ca bentonite $\langle \Box \rangle$

 $P_{2}O_{5}$

CaO

MgO

 K_2O

Na₂O

TiO₂

MnO

02 Characterization of Granite

>	Mineralogy	X-ray diffract	ion analysis (X	RD)					(wt.%)
		Mineral	Plagioclase	Quartz	K-feldspars	Muscovite	Biotite	Chlorite	Total
		Granite	31.3	29.5	26.5	7.2	4.2	1.5	100.2
>	Elemental	X-ray fluores	cence analysis	(XRF)	(wt.%)				
	composition	SiO ₂	71.4	K ₂ O	5.0	N	Ultrabasi	c Basic	Intermediate Acid
		Al ₂ O ₃	14.9	Na ₂ O	3.3		16	K	DB-2 granites Jurassic granitic rocks
		Fe ₂ O ₃	1.5	TiO ₂	0.2	Alkali granit	e ~ Granite		Nepheline syenite Cretaceous granitic rocks
		P ₂ O ₅	0.1	MnO	0.1	C	(% ¹²	11	Syenite
		Loss of ig.	1.1				 ▶ 10 ▶ 10 		Syenite
							V V V V V V V V V V V V	Gabbro	Alkali granite
>	Density / Porosity	Crushe	ed rock	Bulk	specimen		6	/+	diotect + (granodiorite
	/ Surface area	Particle size	Surface area	Bulk density	y Porosity		4	Gabbro	Diorite
		75~150 150~300	0.2087 m²/g 0.1616 m²/g	2.61 g/cm ³	0.222 %		2-	Gabbro	

٥L

 SiO_2 (wt %)

0.01

Se

Sorption capacity 🔶

13

Retardation by Sorption

- Under typical natural conditions, clay or rock surfaces generally carry a negative charge, leading to repulsion to anions and preferred attraction to cations.
- Anionic nuclides: I, C, Cl, and Tc showed low Kd values on both granitic rock and bentonite.
- WRK bentonite showed higher sorption capacity than granitic rock for most tested nuclides except Tc, I, and Zr, because of the larger cation exchange capacity and surface area.

		Kd value	
Cs		Cs+	
Ni	Cationic species	Ni ²⁺	
Zr	000000	$Zr(IV)$: Zr^{4+} or $Zr(OH)^{3+}$, $Zr(OH)_2^{2+}$	Llich Kd
Pd		$Pd(II): Pd(OH)_{2(aq)}$	
Sn	Less	Sn(IV) : SnOCl ₂ / Sn(OH) ₂ Cl ₂	
Nb	CORDIC	$Nb(\vee): Nb(OH)_{6^{-}(aq)}, Nb_2O_{5(aq)}$	
Тс		TcO ₄ -	
С		HCO3-	
CI	Anionic	CI⁻	Low Kd
I	0,0000	-	
Se		SeO ₃ ²⁻	

10⁴

10³

 10^{2}

10¹

10⁰

10⁻¹

10⁻²

Distribution coefficient [Kd, mg/L]

Sn Nb Tc

С

CI

Zr Pd

Ni

Cs

 D_{mol} + effect of porous media = D_p

Sampla	Thickness Diffusion		Bulk density	Porosity	Pore diffusion coefficient (m ² /s)		
Sample	(mm)	area (mm²)	(g/cm ³)	cm ³) (%)	Range	Average	
WRK bentonite	7	615.75	1.6	37	1.34×10 ⁻⁹ - 7.16×10 ⁻⁹	4.09×10 ⁻⁹	
Granitic rock	3	1809.56	2.6	0.2	6.09×10 ⁻¹² - 8.32×10 ⁻¹¹	2.86×10 ⁻¹¹	

• Pore structure of granitic rock is more effective diffusion barrier than that of bentonite for impeding the radionuclide transport.

• With significantly lower porosity compared to bentonite, granite may reduce the diffusion flux by limiting the diffusion area outside of pores and also increase the diffusion length due to pore complexity and high tortuosity.

05 Apparent Diffusion (D_a)

Cationic species

Cs⁺, Ni²⁺, Zr⁴⁺

Less soluble

Pd(II), Sn(IV),

Nb(V)

Anionic species

- Not only retardation by pore structure, diffusing species through a porous medium may partition to solid by sorption, and it directly influences the local concentration gradient, thereby reducing diffusion flux.
- The apparent diffusion coefficient (D_a) is a comprehensive measure of these overall retardation capability.

Steady-state diffusion was hardly observed due to their pronounced tendency for sorption.

 Initial concentration gradient was too small
 to induce steady-state diffusion even after several months

I⁻, HCO₃⁻, CI⁻, TcO₄^{-,} SeO₃²⁻ \rightarrow Weakly sorbing nuclides. High D_a values similar to the D_p

	Diffusion coefficient (D _a , m ² /s)						
Nuclides	WRK be	entonite	Granitic rock				
	experiment	calculated	experiment	calculated			
Cs	N.D	5.13×10 ⁻¹²	N.D	3.46×10 ⁻¹⁶			
Ni	N.D	2.21×10 ⁻¹³	N.D	5.20×10 ⁻¹⁷			
Zr	N.D	5.60×10 ⁻¹²	N.D	3.64×10 ⁻¹⁷			
Pd	N.D	1.90×10 ⁻¹²	N.D	2.93×10 ⁻¹⁶			
Sn	N.D	8.30×10 ⁻¹⁴	N.D	2.27×10 ⁻¹⁸			
Nb	N.D	4.66×10 ⁻¹³	N.D	5.65×10 ⁻¹⁶			
Тс	4.73×10 ⁻⁹	2.90×10 ⁻⁹	3.60×10 ⁻¹¹	1.05×10 ⁻¹¹			
С	7.42×10 ⁻¹⁰	4.64×10 ⁻⁹	6.18×10 ⁻¹²	2.73×10 ⁻¹³			
CI	1.59×10 ⁻⁹	1.34×10 ⁻⁹	2.35×10 ⁻¹¹	1.25×10 ⁻¹¹			
I	4.47×10 ⁻⁹	7.16×10 ⁻⁹	2.74×10 ⁻¹¹	6.90×10 ⁻¹²			
Se	N.D	1.43×10 ⁻¹⁰	3.71×10 ⁻¹²	3.71×10 ⁻¹²			

자 한다. 포스텍 첨단원자력공학부 원자력환경연·

- All tested nuclides showed significantly lower diffusion flux through granitic rock compared to bentonite.
- The difference can be attributed to the low porosity and corresponding pore-connectivity of granitic rock.
- Even though granite showed poor sorption capacity than bentonite for most tested nuclides, the impact of granite's compact structures on nuclide migration demonstrated superior comprehensive retardation.

자 한다. 포스텍 첨단원자력공학부 원자력환경연구

16

- Present study investigates the sorption and diffusion characteristics of non-radioactive isotopes (Cs, Ni, Zr, Pd, Nb, Sn, Tc, I, C, Cl, Se) under oxidizing KURT condition.
- Batch sorption, through-diffusion experiment were performed using on-site collected rock sample and simulate solutions (groundwater) and potential engineering barrier materials (bentonil WRK).
- Potential buffer material, WRK bentonite showed high sorption capacity for Cs, Ni, Zr, Pd, Nb, Sn.
- The granite host rock provided good diffusion barrier for anionic species.
- WRK bentonite showed higher sorption capacity than granitic rock for most tested nuclides, however, comprehensive retardation (D_a) was more efficient in granite, which provides a high physical diffusion barrier to nuclide migration.
- This result highlights the importance of the diffusion barrier provided by complex pore structures as a retardation mechanism in high-level radioactive waste repository.
- All the tested parameters can be used as input parameter of safety analysis of radioactive waste repository

Thank you.

Hyojoo Kim^a, Jaeeun Kang^a, Jae-Kwang Lee^b, Jang-Soon Kwon^b, Wooyong Um^{a*}

^aPohang university of Science and Technology, Chungam–ro 77, Namgu, Pohang, Republic of Korea. ^bKorea Atomic Energy Research Institute, Daedeok–daero 989–111, Yuseong–Gu, Daejeon, Republic of Korea, 34057 <u>*wooyoungum@postech.ac.kr</u>