

Bhupendra Kumar Singh, Nurul Syiffa Mahzan, and Wooyong Um

Bhupendra Kumar Singh (Ph.D.)

Division of Advanced Nuclear Engineering (DANE) Pohang University of Science & Technology (POSTECH) Pohang, South Korea

KOREA NUCLEAR SOCI

Layout of presentation

- > Introduction (why ettringite & ^{14}C ?)
- Synthesis & characterization of ettringite
- Application of ettringite for sequestration of ¹²C (non-radioactive surrogate of ¹⁴C) from simulated waste solutions (NaHCO₃)

 $As HCO_3^-$ (at intermediate pH ~8.50)

• As CO_3^{2-} (at high pH ~11.50)

- Desorption tests
- Conclusions

Why ettringite &¹⁴C?

- > Carbon-14 (¹⁴C), a radionuclide generated in nuclear power plants and nuclear reactor operation, is a serious environmental threat due to its long half-life ($t_{1/2} = 5730$ years) and potential mobility in the environment.
- A large quantity of ¹⁴C is being produced in the reactor water (coolant and moderator), can be discharged from the nuclear facilities into rivers and/or seas and enhance the concentration of ¹⁴C in the aqueous environment.
- > Depending on the pH of the solution, the dissolved inorganic carbon can be distributed carbon dioxide ($CO_2(aq)$), bicarbonate (HCO_3^-), and carbonate ion (CO_3^{2-}).
- In alkaline aqueous media/waste solution, ¹⁴C mainly exists as dissolved inorganic carbonate species (bicarbonate and carbonate).

3

- Ettringite is a hydrous calcium aluminum sulfate naturally occurring mineral and a hydration product of Portland cement [Ca₆Al₂(SO₄)₃(OH)₁₂·26H₂O].
- J. Lehmann (in 1874) coined the term ettringite due to it occurrence near the Ettringer Volcano, Ettringen, Germany.
- It is known to immobilize anions via substituting a) TcO₄⁻ and IO₃⁻ for sulfate (SO₄²⁻)) from the channels as well as b) AsO₄³⁻and SeO₃²⁻ for OH or H₂O from ettringite surface (≡Ca-OH₂, ≡AI-OH) or channel (≡Ca-OH₂) sites.

Synthesis of ettringite

Reagents/Chemicals: Calcium nitrate tetrahydrate $[Ca(NO_3)_2.4H_2O]$, aluminum sulfate octadecahydrate $[AI_2(SO)_3.18H_2O]$, sodium hydroxide (NaOH), and deionized water (DIW).

Characterization of synthesized ettringite

Figure 1. Characteristics of synthesized ettringite. (a) Wide-angle X-ray diffraction (XRD) pattern of material with major reflections at their corresponding 20 values. (b) N₂ adsorption/desorption isotherms and BJH pore size distribution (inset Figure) data. (c) The FT-IR spectrum. (d) FE-SEM image.

쏇한국원자력학회

KOREA NUCLEAR SOCIETY

Sequestration of HCO₃^{-/}CO₃²⁻ from simulated waste solutions

- Experiments were performed in polypropylene tubes (PPT) using simulated waste solutions (100 ppm NaHCO₃ in DIW; except the change in conc. of simulated waste samples).
 - I. At intermediate pH (8.50), the existing species will be HCO_3^-
 - II. Whereas, CO_3^{2-} species will dominate at high pH (11.50)
- Solid to waste solution ratio = 2 g/L and the samples were kept under dynamic condition using benchtop shaker (speed: 150 rpm) at RT.
- Various parameters, including contact times (kinetics) and concentrations of solid/ettringite and waste solutions were varied.
- Reaction time:10 m, 30 m, 1 h, 2 h, 4 h, 8 h, 12 h, 24 h, 48 h, 60 h, and 72 h.
- Pseudo first and second order kinetic modelling.
- Initial concentrations of HCO₃⁻ and CO₃²⁻ anions were varied as 36 ppm, 72 ppm, 108 ppm, 144 ppm, 180 ppm, and 216 ppm.
- Freundlich sorption isotherm analysis.

Sequestration of CO32- from simulated wastes of 바라궁원자력학호

Figure 2. Sequestration of CO_3^{2-} anions simulated waste solution using from ettringite at high pH (~11.50) condition. (a) Kinetics of CO32- anions removal [CO32anions = 72 ppm; S/L = 2 g/L; contact time = 5 m - 60 h] (b) Pseudo-first-order kinetic model for removal of CO_3^{2-} anions. (c) Applicability of pseudo-second-order kinetic model for removal of CO_3^{2-} anions. (d) Effect of initial CO₃²⁻ concentration in waste solution $[CO_3^{2-} anions = 36 ppm - 216 ppm;$ S/L = 2 g/L; contact time = 8 h]. (e) Freundlich sorption isotherm analysis for removal of CO_3^{2-} anions. (f) Effect of sorbent concentration on CO32- removal $[CO_3^2 \text{ anions} = 72 \text{ ppm}; \text{ S/L} = 0.5 \text{ g/L} - 4.0$ q/L; contact time =8 h].

Mechanism of CO₃²⁻ anions sequestration using ettringite

Sequestration of HCO₃⁻ from simulated waste solution

Figure 4. Sequestration of HCO₃anions using ettringite from simulated waste solution at intermediate pH (~8.50). (a) Kinetics of HCO_3^- anions removal [HCO₃⁻ anions = 72 ppm; S/L = 2 g/L; contact time = 10 m - 72 h] (b) Pseudo-first-order kinetic model for removal of HCO_3^- anions. (c) Pseudosecond-order kinetic model for sequestration of HCO_3^- anions. (d) Effect of initial HCO₃⁻ concentration in waste solution $[HCO_3^- \text{ anions} = 36]$ ppm -216 ppm; S/L = 2 g/L; contact time = 48 h]. (e) Effect of sorbent concentration on HCO₃⁻ removal $[HCO_3^- anions = 72 \text{ ppm}; \text{ S/L} = 0.5 \text{ g/L}$ -3.0 g/L; contact time = 48 h].

Mechanism of HCO₃⁻ anions sequestration using ettringite

prior (black data) and after removal of HCO₃anions (colored curves) at 36 ppm-216 ppm initial HCO₃⁻ concentrations in simulated waste solutions at intermediate pH (8.50). (b) The combined FT-IR spectra of ettringite (black) and after removal of HCO₃⁻ anions (colored data) at different initial HCO_3^{-1} anions ⁵⁰⁰ concentrations. (c) The FE-SEM image and

EDS elemental manning of synthesized		
/pes of orbent	Initial concentration of anions in sequestration experiments	S content (Wt. %)
ynthesized tringite	NIL	6.84
ttringite ter removal [•] HCO ₃ -	72 ppm initial concentration of HCO_3^-	2.43
	216 ppm initial concentration of HCO_3^-	0.95

waste solutions.

Wavenumber (cm ⁻¹)	Assignment	
1418	C-O stretching	
1668	O-H bending	
1110	S-O stretching	
850	AI-O-H bending	

Desorption tests

- > Desorption behavior of CO_3^{2-} and HCO_3^{-} anions from ettringite in simulated groundwater (SGW).
- Two sets of desorption experiments were performed in SGW condition both at its natural pH (~ 9.00) and adjusted pH (~ 11.50).
- > SGW = 100 ppm NaNO₃, 100 ppm KCI, 100 ppm Na₂SO₄, and 50 ppm Na₃PO₄ in DIW
- > Solid to solution ratio (ettringite to DIW) = 2g/L; Contact time 1 to 7 days.
- Samples were tested under dynamic condition using benchtop shaker (speed: 150 rpm) at RT.
- > Desorption data were calculated in terms of desorption (%) and retention capacity (%).

- Characterization results (XRD, SEM, and FT-IR) confirmed the <u>synthesis of highly</u> <u>crystalline homogeneous ettringite.</u>
- Synthesized ettringite was used for the sequestration of carbonate anions both at intermediate and high pH conditions at RT.
- Obtained results revealed ~ <u>92-94 % sequestration of ¹²C (surrogate of ¹⁴C) from simulated waste solutions onto ettringite was achieved in 48 h and 8h at intermediate pH (~8.5) and high pH (~11.50), respectively.</u>
- FESEM-EDS analysis and XRD results indicated a considerable phase alteration of ettringite at intermediate pH (HCO₃⁻) removal tests. However, <u>the ettringite structure was</u> <u>quite stable at high pH (CO₃²⁻) removal experiments.</u>
- Pseudo second order kinetic and Freundlich isotherm model was applied for the removal of carbonate anions onto ettringite.
- Ettringite demonstrated efficient CO_3^{2-} and HCO_3^{-} sequestration from simulated waste solution via ligand exchange, substituting OH/H_2O and SO_4^{2-} species from ettringite, respectively.
- Desorption results (retention capacity) suggested that the synthesized ettringite can be potentially applied for removal of ¹⁴C from waste solutions both at the intermediate and high pH conditions.

Korea Atomic Energy Society 2024 Spring Academic Conference (May 8-10)

I sincerely appreciate your attention

Any Questions ?

