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Introduction

 At Advanced Radiation Technology Institutes (ARTI), Jeongeup,

 Recently developed accelerator-based neutron source

 Neutron generation by TMRS (target-moderator-reflector-shield)

at RFT-30 cyclotron (30 MeV proton cyclotron) [1]

○ Target : Generating neutrons

○ Moderator : Cooling down neutrons

○ Reflector : Reducing deviated neutrons

○ Shield : Removing unintended radiations

 Neutron spectrum acquisition by BSS and spectrum unfolding [2, 3]

○ BSS (Bonner sphere spectrometer) : Set of neutron detectors with

different sizes of HDPE (high density polyethylene) for moderation

TMRS experiment results

Bonner sphere spectrometer design
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 Accomplishment of the TMRS neutron energy spectrum obtainment 

through the BSS and the spectrum unfolding

 Ongoing improvement work in reducing the count discrepancies 

by adjusting the criterion for the neutron and gamma signal discrimination 
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 Neutron spectrum by MCNP6.2 simulation

 Fast (above 1 MeV) : No or negligible moderation

 Thermal (below 1 eV) : Fully thermalized by moderation

 Others : Not gone through full thermalization

 BSS design

 𝜙 4 mm × 4 mm 95 % 3
6Li-enriched GS20

○ Advantages of GS20 : Fast decay constant (~ 18 ns)

 suitable for high radiation environment

& capability of neutron-gamma discrimination [4]

 PSD (Pulse Shape Discrimination) to distinguish neutron and gamma pulse

 Qtotal : V-t integral from pulse rise to signal tail (Long gate)

 Qtail : V-t integral from signal head (Short gate) to signal tail

 PSD ratio :
Qtail
Qtotal

 Experimental setup for TMRS neutron detection

 Target : 4 T Be

 BSS : Measurements : x = 240 cm, y = 190 cm (Along the beam line) for 60 s

: Sizes : 0 in. (Bare), 2, 3, 5, 8 & 10 in.

※ Characteristics of BSS

 BSS with diverse sphere sizes has

characteristics to detect widely-ranging

neutrons via elastic collision with

hydrogen nuclei at HDPE.
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※ Pulses from BSS

 In this paper are included :

 MCNP6.2 simulation results

 Neutron detection results

from the BSS

 Neutron spectrum unfolding results

for the characterization of the TMRS

Conclusions & Future Plan
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※ Linearity of BSS

※ Structure of BSS

※ PSD plot for TMRS experiments

 Abscissa :  Proportional to Qtotal
 Ordinate : PSD ratio

 Neutron spectrum unfolding based on GRAVEL [2, 5]

 Neutron counts are located at the upper regions in the PSD plots 

due to the heavy tails of the neutron pulses.
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 Neutron spectrum, ϕj, can be obtained through 

the spectrum unfolding when the neutron counts, 

Ni, and the response matrix, Rij, are related as:

 GRAVEL deduces the spectrum by minimizing 

χ2 when σi is the standard deviation of Ni.


