

Characterization of 30 MeV Proton Cyclotron-Based **Neutron Source by Utilizing Bonner Sphere Spectrometer**

Gyuhaeng Jo^a, Soobin Lim^a, Bong-Ki Jung^b, Kyoung-Jae Chung^{a*} ^aDepartment of Nuclear Engineering, Seoul National University, 1, Kwanak-ro, Kwanak-gu, Seoul, Republic of Korea ^bKAERI, 111, Daedeok-daero 989beon-gil, Yuseong-gu, Daejeon, Republic of Korea

**Corresponding author: jkjlsh1@snu.ac.kr*

Introduction

- At Advanced Radiation Technology Institutes (ARTI), Jeongeup,
 - → Recently developed accelerator-based neutron source
 - Neutron generation by TMRS (target-moderator-reflector-shield) at RFT-30 cyclotron (30 MeV proton cyclotron) [1]
 - Target : Generating neutrons
 - Moderator : Cooling down neutrons
 - Reflector : Reducing deviated neutrons
 - Shield : Removing unintended radiations
 - Neutron spectrum acquisition by BSS and spectrum unfolding [2, 3]
 - BSS (Bonner sphere spectrometer) : Set of neutron detectors with different sizes of HDPE (high density polyethylene) for moderation

In this paper are included :

MCNP6.2 simulation results

Department of

ENGINEERING

X PSD plot for TMRS experiments

- Neutron detection results from the BSS
- Neutron spectrum unfolding results for the characterization of the TMRS

Neutron spectrum by MCNP6.2 simulation

- Fast (above 1 MeV) : No or negligible moderation
- Thermal (below 1 eV) : Fully thermalized by moderation
- Others : Not gone through full thermalization

Experimental setup for TMRS neutron detection

- Target : 4 T Be
- BSS : Measurements : x = 240 cm, y = 190 cm (Along the beam line) for 60 s : Sizes : 0 in. (Bare), 2, 3, 5, 8 & 10 in.

(d) 5 in.

(f) 10 in.

Abscissa : Proportional to Q_{total} Ordinate : PSD ratio

- Neutron counts are located at the upper regions in the PSD plots due to the heavy tails of the neutron pulses.
- PSD (Pulse Shape Discrimination) to distinguish neutron and gamma pulse
 - Q_{total}: V-t integral from pulse rise to signal tail (Long gate)
 - Q_{tail}: V-t integral from signal head (Short gate) to signal tail

Bonner sphere spectrometer design

X Characteristics of BSS

BSS with diverse sphere sizes has characteristics to detect widely-ranging collision with elastic neutrons via hydrogen nuclei at HDPE.

X Linearity of BSS

			^C total					_
	Sphere size [in.]	0	2	3	5	8	10	•
Neutron counts	MCNP6.2	4.697 ×10 ⁴	6.747 ×10 ⁴	1.497 ×10 ⁵	4.053 ×10 ⁵	6.472 ×10 ⁵	6.671 ×10 ⁵	•
	Experiments	6.183 ×10 ⁴	1.700 ×10 ⁵	3.423 ×10 ⁵	7.990 ×10 ⁵	4.607 ×10 ⁵	4.383 ×10 ⁵	

Neutron spectrum unfolding based on GRAVEL [2, 5]

→ PSD ratio : $\frac{Q_{\text{tail}}}{Q}$

• Neutron spectrum, ϕ_i , can be obtained through the spectrum unfolding when the neutron counts, N_i , and the response matrix, R_{ii} , are related as:

 $N_i = \sum_{i} R_{ij} \phi_j$

 GRAVEL deduces the spectrum by minimizing χ^2 when σ_i is the standard deviation of N_i.

Acknowledgments

This work was supported by the National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2020M2D1A1064206) and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (No. RS-2022-00154676 and No. RS-2023-00281276).

Conclusions & Future Plan

- Accomplishment of the TMRS neutron energy spectrum obtainment through the BSS and the spectrum unfolding
- Ongoing improvement work in reducing the count discrepancies ** by adjusting the criterion for the neutron and gamma signal discrimination

Reference

[1] Y. B. Kong, M. G. Hur, E. J. Lee, J. H. Park, Y. D. Park, and S. D. Yang, Predictive ion source control using artificial neural network for RFT-30 cyclotron, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol.806, pp.55-60, 2016.

[2] G. F. Knoll, Radiation Detection and Measurement, John Wiley & Sons, New York, pp.555-556, 2010.

[3] D. W. Freeman, D. R. Edwards, and A. E. Bolon, Genetic algorithms-a new technique for solving the neutron spectrum unfolding problem, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol.425, pp.549-576, 1999.

[4] Y. Song, J. Conner, X. Zhang, and J. P. Hayward, Monte Carlo simulation of a very high resolution thermal neutron detector composed of glass scintillator microfibers, Applied Radiation and Isotopes, Vol.108, pp.100-107, 2016.

[5] M. Matzke, Unfolding of particle spectra, International Conference Neutrons in Research and Industry, SPIE, Vol.2867, pp.598-607, 1997.

KNS 2024 Spring Conference 2024. 05. 08. - 2024. 05. 10.

