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Intro 

Lesson from Fukushima 

- Internal monitoring systems could fail in case of severe 

accident. 

Indirectly estimating the state with external environmental 

monitoring data becomes essential. 

-  Conservative emergency response had price. 

Giving appropriate information for decision making is crucial. 



Intro 

How to estimate Source Term 

- Radionuclides’ concentration data has time delay. 

Despite giving accurate radionuclides’ activity, it is 

inappropoirate for emergency response. 

-  Gamma dose rate gives real time but limited information 

Estimating source term with gamma dose rate is  

“ill- posed problem.” 



Previous Study 
Researcher Forward Model Inverse Model Radionuclide 

V. Tsiouri, et. al. (2011) DIPCOT* Variational Data Assimilation 1 radionuclide: Ar-41 

Genki Katata, et. al. (2012) WSPEEDI-II* Reverse Estimation methods 5 radionuclides: I-131, I-132, Te-132, Cs-134, Cs-137 

O. Saunier, et. al. (2013) Eulerian 1dX Inverse modeling: 

Tikhonov regularization with the isotopic ratios 

8 radionuclides: Cs-134, Cs-137, Cs-136, Ba-137m, I-131, I- 

132, Te-132, Xe-133 

Ond rei Tichý, et. al. (2017) FLEXPART 

 

Bayesian method for recovery of the Source term: using Variational Bayes 

methodology 

16 radionuclides: 

Cs-136, Cs-134, Cs-137, I-133, I-131, I-135, I-132, I-134, Kr-85m, Kr-88, 

Kr-87, Sr-90, Sr-89, Te-132, Xe-135, Xe-133 

C. V. Srinivas, et. al. (2017) SPEEDI ASTER 1 radionuclide: Ar-41 

Xiaole Zhang, et. al. (2017) JRODOS* Sequential Estimation method: 

Source-receptor relationship & Tikhonov regularization & 

Suppression of negative estimation 

5 radionuclides: 1-131, Cs-137, Te-132, La-140, Xe-133 

Xinpena Li, et. al. 2019) RASCAL, RIMPUFF* Inverse modeling: 

Weighted additive model(consider priors from different mechanisms) 

Ensemble Kalman Filter 

4 radionuclides: 1-131, Cs-137, Cs-134, Te-132 

Hiroaki Terada, et. al. (2020) WSPEEDI-I 

- GEARN (LDM) 

Ensemble meteorological calculations & Bayesian inference method 2 radionuclides: Cs-137, I-131 

Yongsheng Ling, et. al. (2021) InterRAS* Recurrent Neural Networks(RNN) 6 radionuclides: Sr-91, La-140, Te-132, Xe-133, I-131, Cs-137 

Yongsheng Ling, et. al. (2022) InterRAS Temporal Convolution Network(TCN, Sequential CNN) 7 radionuclides: Kr-88, Te-132, I-131, Xe-133, Cs-137, Ba-140, 

Ce-144 

K. S. Tollose, et. al. (2022) DERMA* Bayesian Inversion and Sampling Method: 

Inverse method for probabilistic source term estimation 

11 radionuclides: Kr-88, Xe-133, Xe-135, Xe-135m, Cs-134, 

Cs-137, I-131, I-132, I-133, I-135, Te-132 

Yongsheng Ling, et. al. (2023) InterRAS Fusion of TCN and 2D-CNN 7 radionuclides: Kr-88, Te-132, I-131, Xe-133, Cs-137, Ba-140, 

Ce-144 

Siho Jang, et. al. (2024)  

 

Gaussian Plume Ensemble Kalman Inversion(EKI) 11 radionuclides: Kr-88, Xe-133, I-131, Cs-137, Te-132, Sr-91, Mo-99, 

Ba-140, La-140, La-140, Ce-144, Sb-129 

Yongsheng Ling, et. al. (2024) InterRAS TCN, Long Short-Term Memory(LSTM), GRU. 4 radionuclides: Kr-88, Sr-91, Te-132, I-131 
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Classical Approach 

AI based Approach 



Previous Study 

Classical approach 
  

+ Gives relatively precise prediction. 
-  Need forward computation. 
-  Sequential  algorithm makes solution unscalable.  
-  Vulnerable to observation error. 

AI based approach 
   

+ No need forward computation. 
+ Parallel computation makes scalable solution.  
-  Gives relatively unprecise prediction. 
-  Vulnerable to observation error. 
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Inverse Problem Solving 
with point prediction 

Invertible Neural Network based approach 
   

+ No need forward computation. 
+ Parallel computation makes scalable  
+ Gives true posterior distribution. 
+ Model considering observation error. 

 
 

What has been done in this research 

Bayesian Inverse Problem Solving 
with posterior distribution estimation 

point prediction 

Posterior 
distribution 
estimation 



Research Objective 

Foward Process:   𝑦 = 𝑓(𝑥) 

Source Term  
release rate  

𝒙 

Atmospheric  
γ ray at receptors  

𝒚 

Atmospheric Dispersion 
  

• Various LV3PSA code 
• Gaussian Plume Model 
• Gaussian Puff Model 



Research Objective 
Source Term  
release rate  

𝒙 

Atmospheric  
γ ray at receptors  

𝒚 

Inverse Problem:   𝑥 = 𝑓−1(𝑦) 

Inverse Problem Solving 
with point prediction 
  

• Classical Optimization 
• AI based Inverse function 
• Reverse Estimation  

We can get source term release rate. 

With given 𝛾 dose values of receptors, 
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Research Objective 
Source Term  
release rate  

𝒙 

Atmospheric  
γ ray at receptors  

𝒚 

Observation value of   
γ ray at receptors  

𝒚𝒐𝒃𝒔 

In reality,  We can not access to actual  
value of Atmospheric gamma dose. 

Instead,  We can access to noisy observation  
value of Atmospheric gamma dose. 

𝒚𝑜𝑏𝑠 = 𝒚 + 𝝐 
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Research Objective 
Source Term  
release rate  

𝒙 

Atmospheric  
γ ray at receptors  

𝒚 

Observation value of   
γ ray at receptors  

𝒚𝒐𝒃𝒔 

Therefore, with given 𝛾 dose observation,  true information we can get is posterior distribution    𝒑 𝒙   𝒚𝒐𝒃𝒔)  
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Research Objective 
Source Term  
release rate  

𝒙 

Observation value of   
γ ray at receptors  

𝒚𝒐𝒃𝒔 

? 

𝒑 𝒙   

What kind of 𝒙 maps to 𝒚𝒐𝒃𝒔 ? 

With given 𝒚𝒐𝒃𝒔 , 

~(Lv2PSA, STC) 
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Constrained by 

Gaussian Plume model 
with given  

meteorological condition 𝒂  What has been done  
in this research 

Bayesian 
Inverse  
Problem Solving 

  

• Based on Generative AI 
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INN(Invertible Neural Network) can be used for Bayesian Inverse Problem. 

Model -Forward 
: training 

  

Learn hidden structure 
from dataset 

Model  -Inverse 
: Inference 
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Methodology :  
  

Invertible Neural Network 
INN(Invertible Neural Network) can be used for Bayesian Inverse Problem. 

Wind velocity      : 4.3m/s 
Atmospheric Stability : B1 
𝛾 observation values   : ~μSv/h 

𝑥1 

𝑥2 

𝑥3 

⋮ 

𝑦1 

𝑥~ 𝒑(𝒙|𝒚) 
𝑦 

Wind velocity      : 2.3m/s 
Atmospheric Stability : D 
𝛾 observation values   : ~μSv/h 

𝑦2 

Wind velocity      : 12.1m/s 
Atmospheric Stability : B2 
𝛾 observation values   : ~μSv/h 

𝑦3 

Wind velocity      : 8.2m/s 
Atmospheric Stability : C 
𝛾 observation values   : ~μSv/h 

Model -Forward 
: training 

  

Learn hidden structure 
from dataset 

Model  -Inverse 
: Inference 

  

 
Generating data from 

learned structure 
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Validation with ABC(Approximate Bayesian Computation) is composed of two cases. 

Output and validate of posterior probability distribution 𝒑(𝒙|𝒚) according to… 

1. Changes in the # of 𝜸-dose measurement  station 𝒚 . 

 

 

 

2. Changes in the observation uncertainty 𝝐 of 𝜸-dose measurement. 

𝒚  
1~40  

𝝐 
0.5%~20%  

Result 

𝒚 𝒚𝑜𝑏𝑠 

𝒚𝑜𝑏𝑠 = 𝒚 + 𝝐 

𝒚  



Result : # of observation |𝒚| variation  

Compare  ABC generated  𝑝(𝑥|𝑦𝑜𝑏𝑠, 𝑎) and INN  generated 𝑝(𝑥|𝑦𝑜𝑏𝑠, 𝑎)  
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Result : # of observation |𝒚| variation  

As # of observation |𝒚| get bigger, posterior distribution 𝑝(𝑥|𝑦𝑜𝑏𝑠, 𝑎)  shrink!  



Result : observation uncertainty 𝝐 variation  

Compare  ABC generated  𝑝(𝑥|𝑦𝑜𝑏𝑠, 𝑎) and INN  generated 𝑝(𝑥|𝑦𝑜𝑏𝑠, 𝑎)  

 



Result : observation uncertainty 𝝐 variation  

As observation uncertainty 𝝐 get smaller,   

 



Result : observation uncertainty 𝝐 variation  

As observation uncertainty 𝝐 get smaller,  posterior distribution 𝑝(𝑥|𝑦𝑜𝑏𝑠, 𝑎)  shrink!  

 



Conclusion 

1.   Offering probability distribution as a result. 

 - Gives true posterior without any approximation or regularization 

 - Much more realistic and applicable in case of emergency 

Previous study 

point  
prediction 

In this study 

Posterior 
distribution 
estimation 

Evacuate 
or not? 

Do not have to! 

Evacuate! 



Conclusion 

2.   Successful modeling of  Bayesian inverse problem considering observation error.   

 - Can be used for determining accident status (ex STC, CFVS status…) 

 - Gives reliable data for further PSA analysis 

 

STC3 
Loss of offsite power 

STC4 
Loss of Feedwater 

STC6 
SBLOCA 

33% 

33% 

33% 
𝜸 dose  
observation 

Prior 
Distribution 

posterior 
Distribution 

STC3 
1.6% 

STC4 
98.2% 

STC6 
0.2% Joint 

Probability 



Conclusion 

3. INN is scalable solution  

 - Can be applicable to Gaussian puff model and Largrangian dispersion model 

 - Fully works in GPU,  harnessing advantage of modern-computing technology 

 

Sophisticated 
and Intensive  

Forward 
Simulation 

Modern  
Computing 

and Computer  
technology 
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Appendix :  
Invertible Neural Network training 

𝑝  ∙ 
 𝑝𝑟𝑖𝑜𝑟
 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

 →
 𝑈𝑝𝑑𝑎𝑡𝑒 
 𝑤𝑖𝑡ℎ 𝑑𝑎𝑡𝑎 𝒚𝒐𝒃𝒔
 𝑎𝑛𝑑 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝒂

 𝑝  ∙  𝒚𝒐𝒃𝒔, 𝒂)
 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟
 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛

  

Given training data  
𝒙𝒊, 𝒂𝒊, 𝒚𝒊  with 𝑦𝑖 = 𝑓 𝒙𝒊; 𝒂𝒊  , 

𝐦𝐢𝐧𝐢𝐦𝐢𝐳𝐞
𝜽

𝑫 { 𝒑𝐍𝑵𝜽
𝑭 𝒙𝒊 ;𝒚𝒊 ,𝒂𝒊

(∙), 𝐍(𝟎, 𝟏)} 

Training scheme is as followed. 

𝑁𝑁𝐼 𝒛; 𝒚, 𝒂 = 𝒙  

We want to make, 

Thanks to invertible architecture of INN(RealNVP),  

it is possible to emulate a specific distribution as following manner.  

In conclusion, whole training process of INN for  

Bayesian inverse problem is summarized as followed. 

𝑁𝑁𝐹 𝒙; 𝒚, 𝒂 = 𝒛 

with     𝒙~𝑝  ∙ , 𝒚 = 𝑓 𝒙; 𝒂  
if   𝑁𝑁𝐹 𝒙;  𝒚, 𝒂 ~ 𝑁 0, 1 ,  
then with sampled, 𝒛 ~ 𝑁 0, 1 , 
𝑁𝑁𝐼 𝒛;  𝒚, 𝒂  ~ 𝑝 𝒙  𝒚, 𝒂) 


