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1. Introduction 

 
A reactor containment building is the last line of 

defense in nuclear power plants to prevent radioactive 
materials from being released into the environment [1]. 
Thus, it is essential to evaluate the safety of the 
containment building. As probabilistic safety assessment 
has been introduced in nuclear power plants, many 
investigations have examined the internal pressure 
capacity of nuclear containment buildings subjected to 
internal pressure during accidents. Because of the need 
to explicitly consider and quantify all sources of 
uncertainty, the probabilistic safety assessment requires 
an extensive amount of finite element analysis. 
Therefore, this study proposes a sequential fragility 
framework using machine learning to efficiently 
estimate fragility curves with minimizing FE analysis. 
 

 
2. Validation and verification of 1:4 scaled PCCV 

FE model 
 

To investigate the performance of a Prestressed 
Concrete Containment Vessel (PCCV) under internal 
pressure, Sandia National Laboratories conducted an 
experiment [1]. In this study, a Finite Element (FE) 
model of the PCCV developed and validated from the 
experimental testing are used [2]. The FE model used 
shell elements to represent the liner, solid elements for 
the concrete structures, and truss elements to simulate 
the rebar and tendons (Fig. 1). Importantly, the global 
hoop strain at the free-field of the PCCV during the 
experiment closely matched the results predicted by the 
FE model, demonstrating the model validation as shown 
Fig. 1. 

 

 
 

 
Fig. 1. FE model of PCCV and model validation. 
 

3.  Machine learning based sequential fragility 
framework   

 
The proposed framework is shown in Fig. 2. It 

includes 13 steps: 
1) Extracting of a Monte Carlo population (S) of 

input variables. From the population of input variables, 
1 input dataset is sequentially extracted to train and test 
the machine learning model until the convergence rate is 
satisfied. A large enough number of samples is required 
because the appropriate number of finite element 
analyses for the fragility analysis is vague at this step. In 
this study, 1000 samples are generated for each input 
variable to obtain the benchmark. 

2) Extracting initial input datasets (ni, i = 1) from the 
population (S) and running finite element analysis with 
the initial input datasets through the validated finite 
element model of the PCCV. The analytical results 
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obtained from the initial input datasets are collected and 
used to train and test the machine learning models for 
the next stage. In this study, the ratio of training and 
testing datasets is assumed to be 7:3; thus, the 10 input 
datasets are initially extracted from the population (S), 
and output data (global hoop strain) obtained from finite 
element analyses are collected. Finally, the initial 
datasets (Ni, i = 1) for the training and testing is 
generated for the next stage. 

3) Training and testing the machine learning model 
on the initial datasets (Ni, i = 1). To optimize model 
performance and prevent overfitting/underfitting, we 
will employ the average correlation coefficient (R²) 
between training and testing results as an evaluation 
metric.  

4) Determining the most accurate model for the next 
step. 

5) Generating a Monte Carlo population of input 
variables for a fragility analysis to predict the response 
of the PCCV and estimate a fragility curve using the 
machine learning model chosen in the 4th step. In this 
step, we'll generate a Monte Carlo population of 1000 
input datasets that reflects the uncertainties. This 
population (input datasets) will join into the machine 
learning model chosen earlier. 

6) Predicting of global hoop strain for the liner at 
defined internal pressure levels using the machine 
learning model with the 1000 input datasets. 

7) Calculating the probability of a failure at the 
defined internal pressure levels. A limit state, derived 
from the experimental testing, are used: ultimate limit 
state (0.4% global hoop strain). The calculated 
probabilities are stored for comparison in future 
iterations. 

8) Performing finite element analysis with new one 
input dataset extracted from the population (S) and 
generating new datasets (Ni+1, i = 1)  

9) Training and testing the machine models with the 
new datasets (Ni+1, i = 1) 

10) Determining the most accurate model for the next 
step like the 4th step 

11) Repeating the 6th and 7th steps. 
12) Calculating Convergence Index (CI) between 

previous and present the probability of a failure at the 
defined internal pressure levels, where CI represents the 
gradient between the previous and the present fragility 
curves; 

(1) 

 
where, nIM is the total number of the defined internal 

pressure levels.   is the previous fragility curve,  is 
the average value of the previous fragility curve at the 
previous , and  is the present fragility curve. In this 
study, the value of CI is used for stopping this 
framework and it assumes 0.99995 of CI as a threshold; 

 
(2)  CI > 0.99995, five times in a row   

8th to 12th steps are repeated until the criterion is 
satisfied. 

13) Finally, estimating a final fragility curve with 
present probability data at each internal pressure levels 
using Maximum Likelihood Estimation. 

 

 
 
Fig. 2. Proposed sequential fragility framework using machine 
learning 

 
4. Result 

In this study, nine uncertainties in material are 
considered: compressive strength of concrete, yield 
stress of rebar, Young’s modulus of rebar, yield stress 
of tendon, Young’s modulus of tendon, yield stress of 
liner, Young’s modulus of liner, Horizontal tendon 
stress, and Vertical tendon stress [1, 3]. In addition, four 
different machine learning models are employed: linear 
regression, support vector machine, neural network, and 
Gaussian process regression. Among them, Gaussian 
process regression emerged as the most effective model 
for prediction as shown in Fig. 3. As discussed earlier, 
the framework terminates when the CI exceeds 0.99995 
for five consecutive iterations. As a result, only 34 
datasets are satisfied with this criterion, resulting in the 
estimation of fragility curve based using only this 
limited data within this framework. Fig. 4 shows 
parameters of fragility curves according to # of datasets. 
After incorporating 28 datasets, the parameters of the 
fragility curves are converged into a specific value. Fig. 
5 compares benchmark with fragility curves using the 
proposed framework and FE analysis. The framework 
provides an accurate fragility curve with only 34 
datasets compared to the benchmark. On the other hand, 
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the fragility curve obtained from only 34 FE analyses is 
significant different from the benchmark. 

 

 
Fig. 3. Comparison between observed and predicted results 
(training and testing) 
 

 
Fig. 4. Variation of Mean (Am), and standard deviation (β) of 
fragility curve according to # of datasets 

 
Fig. 5. Comparison of benchmark with fragility curves 

using the proposed framework and FE analysis 
 

5. Conclusion 
 

This study proposes a sequential fragility framework 
using machine learning to efficiently estimate fragility 
curves with minimizing FE analysis. Within this 
framework, the appropriate number of the FE analysis 
are actively determined. As a result, the framework 
provides an accurate fragility curve with only 34 
datasets compared to the benchmark. On the other hand, 
the fragility curve obtained from the same number of FE 
analyses is significant different from the fragility curve 
calculated within the framework. 
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