2024 한국원자력학회 춘계 학술발표대회 제 7분과 방사선 방호

Development and Verification of Calculation Tool of Operational Intervention Levels (OILs) for HANARO Research Reactor

한양대학교 원자력공학과 방사선과학및안전 연구실 한국원자력연구원 원자력방재실 신수인 soooin@kaeri.re.kr

2024/05/09

Development and Verification of Calculation Tool of Operational Intervention Levels (OILs)

CONTENTS

2024 한국원자력학회 춘계 학술발표대회

01 INTRODUCTION

INTRODUCTION 배경 및 필요성

Fig 1. EPC I Reactor (1,000 MW_{th} 이상 NPP)의 EPZ 사이즈

Fig 2. EPC II Reactor (10 MW_{th} 이상 RR)의 EPZ 사이즈

4

INTRODUCTION 배경 및 필요성

- 🛛 원자력사고시 운영개입준위의 적용
 - 운영개입준위 (Operational Intervention Level, OIL)
 원자력/방사선 비상 시 즉시 사용 가능한 모니터링 결과 기반
 적절한 대응조치를 신속하게 이행할 수 있는 운영 기준
 (Operational Criteria)
 - **■** 옥내대피 및 소개조치를 위한 운영개입준위 OIL1 $_{\gamma}$ (t,mix)
 - 목적 : 지표면에 침적된 방사성플룸으로부터

외부피폭 및 내부피폭으로 인한 영향을 방지하기 위한 옥내대피 및 소개조치, KI 복용 등의 긴급보호조치

• **기준** : 셧다운 후 <mark>1일</mark> 이내

지표면 위 1 m 지점 주변선량당량률 1,000 µSv/h

• 대표인 : 피폭경로에 따라 1세 영아, 성인

Fig 3. Structure of generic criteria and operational criteria

 Fig 4. Exposure pathway for the 'Ground' scenario*

 * : ① Ground shine에 의한 외부피폭(영아), ② 재부유된 물질의 Air shine으로 인한 외부피폭(영아)

 ③ 재부유된 물질 흡입으로 인한 내부피폭(성인), ④ 섭취로 인한 내부피폭(성인)

- ☑ 기존 IAEA OILs 계산툴 : 'OIL CALCULATION' 스프레드시트
 - 기준 시설: 3,000 MW_{th} 경수로 및 사용후핵연료 (EPC I 시설)
 - 구성: 'Welcome'탭, 'Control'탭, 'Calculation'탭, 'OIL8'탭

엑셀 VBA 코드 기반의 계산툴에 사용자 편의성을 고려한 기능 추가

연구용원자로 HANARO에 대한 선원항 데이터 수집 및 DB구축

IAEA 기존 계산툴을 벤치마킹하여 연구용원자로용 OILs 계산툴 개발·검증

MATERIALS AND METHODS

MATERIALS AND METHODS OIL1₇(t,mix)의 계산식

02

$$OIL1_{\gamma}(t, mix) = \left(\sum_{i} (RA_{i}(t, mix) \times H^{*}_{grd-sh,i}) \times WF_{OIL1_{\gamma}} \times UC \times DA_{OIL1_{\gamma}}(t, mix) \quad \dots (1)\right)$$

특정 방사성핵종 혼합물 내 핵종 i의 상대 방사능

$$\frac{RA_i(t,mix)}{\sum_{j=1}^n A_i(t,mix)} = \frac{I_{fuel-type,i}(t_0) \times e^{-\lambda_i \times (t-t_0)} \times RF_i(mix)}{\sum_{j=1}^n A_i(t,mix)}$$

 $= \frac{I_{facility,i}(t_0) \times e^{-\lambda_i \times (t-t_0)} \times RF_i(mix)}{\sum_{j=1}^n A_i(t,mix)} \qquad \cdots (2)$

- A_i(t,mix) [Bq] : 특정 방사성핵종 혼합물 내 경과시간 t 일 때, 핵종 i 의 방사능
- I_{fuel-type,i}(t) [Bq] : 경과시간 *t* 일 때, 연료 내 핵종 *i* 의 재고량
- *I_{facility,i}*(t) [Bq] : 경과시간 *t* 일 때, 시설에 따른 핵종 *i* 의 재고량
- *RF*(mix) [unitless] : 특정 방사성 핵종 혼합물의 핵종 *i* 의 방출분율

Fig 6. Time-dependent activity of facility

02

Fig 7. Flowchart of source term evaluation for facility-dependent maximum hypothetical accident

Fig 8. A view of Research Reactor HANARO Table 1. Design characteristics of HANARO

Reactor type	Open-tank-in-pool
Power	30 MW _{th}
Fuel composition	19.75% U-235, U ₃ Si-Al
Fuel assembly	20×36–rod hexagonal assembly/ 12×18–rod circular assembly
Core residence time	175 full-power days
Core period (run/shutdown)	27 days / 14 days

MATERIALS AND METHODS 대상 시설에 대한 사고시나리오 및 선원항

② 사고 시나리오

Fig 9. Scheme of release fraction

Table 4. HANARO release fraction

방출분율 핵종 그룹	TID-14844 기반	NUREG-1465 기반	SRS No. 53 기반 (ASTRA 연구로)
Halogens	5.0E-02	4.0E-05	1.0E-04
Alkali Metal	1.0E-03	3.0E-05	1.0E-06
Transition metals	1.0E-03	2.5E-07	1.0E-06
Tellurium Group	1.0E-03	5.0E-06	1.0E-06

하나로 안전성분석보고서(SAR)에서 고려하는 최대가상사고 : <mark>채널유동차단사고</mark>

Table 2. Maximum hypothetical accident scenario of HANARO

Facility classification	Name	Maximum hypothetical accident	Reference
연구용원자로	하나로	채널 유동 차단 사고	KAERI/TR-
Research Reactor	HANARO	Channel flow blockage accident	7594/2019

③ - (a) 재고량 /_{facility,}(t₀)

- 하나로 노심재고량을 ORIGEN2코드로 재산출한 기술보고서 데이터 이용
 - Sr-90, Mo-99 등 **모핵종과 평형상태의 딸핵종**은 별도 고려 X
 - 방출 후 인체영향이 미미한 **불활성기체, 초단수명 방사성핵종**은 고려 X

Table 3. Radionuclide of interest in the OIL calculation for HANARO

Radionuclide group	Radionuclide							
Halogens	Br-80m, Br-82, Br-83, Br-84, I-131, I-133, I-134, I-135							
Alkali metals	Rb-86, Cs-134, Cs-136, Cs-137							
Transition metals	Ru-103, Ru-105, Ru-106							
Tellurium group	Te-127, Te-127m. Te-129m, Te-131m, Te-132							

연구용원자로 HANARO에 대한 OILs 계산툴의 구조 **}**••

02

MATERIALS AND METHODS 연구용원자로 HANARO에 대한 OILs 계산툴의 구조

Fig 10. Flowchart of OILs calculation tool for HANARO

03 RESULTS AND DISCUSSIONS

RESULTS AND DISCUSSIONS

연구용 원자로 HANARO에 대한 OILs 계산툴

🔽 연구용 원자로 HANARO에 대한 OILs 계산툴 구조 및 기능

Section El Image: Description of the section o

Fig 11. 'Setting' tab of OILs calculation tool for HANARO

Calculation 탭

Fig 12. 'Calculation' tab of OILs calculation tool for HANARO

• 사용자 설정

03

OILs(t,mix), 시설에 따른 재고량, 사고 시나리오에 따른 방출분율

• OILs 결과값, 그래프 및 최솟값 플로팅

- for HANARO
- 시간 t (0.1 365일)의 계산과정 확인
- 각 시설에 대한 <mark>재고량</mark>과

시나리오에 대한 <mark>방출분율</mark> 데이터 확인

Fig 13. 'Term' tab of OILs calculation tool for HANARO

- 계산에 이용된 <mark>인자의 유도과정</mark> 확인
- **핵종별 데이터** 확인

물리적 데이터, 시나리오별 핵종 거동 데이터, 선량환산인자 데이터 등

03

연구용 원자로 HANARO에 대한 OILs 계산툴

15

03

RESULTS AND DISCUSSIONS 연구용 원자로 HANARO에 대한 OILs 계산툴

VOLID MIX

RESULTS AND DISCUSSIONS 연구용 원자로 HANARO에 대한 OILs 계산툴 검증

- 🛯 동일 핵종 재고량 및 방출분율에 대한 계산결과 비교
 - 방법 : 동일 핵종(교차 핵종 16개)에 대해 두가지 계산툴에서의

동일 재고량 및 방출분율에 대해 <mark>경과시간 0.1 - 10일 OIL1_γ(t,mix)값</mark> 비교

- IAEA OILs 계산툴 내 핵종 수정 후 ALL MIXES 계산 기능 이용
- 연구용 원자로 HANARO에 대한 OILs 계산툴 내 USER CUSTOM MIX 계산 기능 이용
- 대상

03

• 핵종 :	Halogens	I-131, I-133, I-134, I-135
	Alkali metals	Rb-86, Cs-134, Cs-136, Cs-137
	Transition metals	Ru-103, Ru-105, Ru-106
	Tellurium group	Te-127, Te-127m, Te-129m, Te-131m, Te-132

- 재고량 (연료타입) : Standard fuel type
- 방출분율 (핵종 믹스) : Mix 1 19

			Complete this table with						
			your own mix						
				RFi(mix)					
			Rads.	[unitless]					
			Rb-86	0.00E+00					
			Sr-89	1.98E-03					
USER	R CUSTOM M	X	Sr-90+	5.23E-04					
Comp	lete this table wi	th 🔪	Sr-91	0.00E+00					
USE	R CUSTOM MIX		Y-91	0.00E+00					
	Iracility.(0)	RFi(mix)	Zr-95+	3.20E-06					
Rads.	[Ba]	[unitless]	Zr-97+	0.00E+00					
-80m			Mo-99+	4.08E-11					
-82			Ru-103+	1.03E-08					
-83			Ru-105	0.00E+00					
-04			Ru-106+	2.29E-09					
-04			Rh-105	0.00E+00					
-86			Te-127m+	0.00E+00					
-103			Te-127	0.00E+00					
-105			Te-129m+	4.29E-01					
-106			Te-131m	0.00E+00					
-127			Te-132+	4.35E-01					
-127m			L-131	1.12E-01					
-129m			L-133	5.86E-01					
-131m			I-134	0.00E+00					
-132			I-135	0.00E+00					
31			Cs-134	1.05E-01					
22			Cs-136	0.00E+00					
33			Cs-137+	1.07E-01					
34			Ba-140+	2.21E-03					
35			Ce-141	3.53E-06					
-134			Ce-143	0.00E+00					
-136			Ce-144+	3.53E-06					
-137			Pr-143	0.00E+00					
234			Nd-147	0.00E+00					
235			Np-239	4.16E-06					
236			Pu-238	5.07E-06					
238			Pu-239	2.32E-06					
-230			Pu-240	2.39E-06					
-231			Pu-241	4.77E-06					
-234			Am-241	0.00E+00					
		-	Cm-242	3.02E-06					

Fig 14. Cross radionuclide list of

Research Reactor OILs calculation tool (left); IAEA OILs calculation tool (right)

RESULTS AND DISCUSSIONS

03

연구용 원자로 HANARO에 대한 OILs 계산툴 검증

🛛 동일 핵종 재고량 및 방출분율에 대한 계산결과 비교

Fig 15. Results of OIL1_v(t,mix) using (a) HANARO OIL calculation tool and (b) the IAEA OIL calculation tool

Table 5. Relative deviation (%) of OIL1 $_{\gamma}$ value using HANARO calculation tool to OIL1 $_{\gamma}$ value using IAEA calculation tool

RELATIVE DEVIATION (%)	mix1	mix2	mix3	mix4	mix5	mix6	mix7	mix8	mix9	mix10	mix11	mix12	mix13	mix14	mix15	mix16	mix17	mix18	mix19
MIN	-0.80	-0.77	-0.67	-0.78	-0.67	-0.66	-0.70	-0.70	-0.67	-0.69	-0.74	-0.72	-0.68	-0.70	-0.33	-0.68	-0.69	-0.76	-0.74
MAX	-0.83	-0.81	-0.70	-0.83	-0.71	-0.69	-0.76	-0.77	-0.69	-0.72	-0.81	-0.76	-0.71	-0.75	-0.55	-0.71	-0.72	-0.79	-0.78

계산결과 간 상대편차 최대 약 +0.8% 이내 → 새 계산툴의 구조 검증

연구용원자로의 경우, 보다 낮은 수준의 <mark>운영개입준위 적용</mark> 필요

Fig 16. $OIL1_{\gamma}(t,mix)$ for HANARO

연구용원자로 HANARO에 대한 OIL1 $_{\gamma}$ (t,mix) 결과

연구용 원자로 HANARO에 대한 OIL1 $_{\gamma}$ (t,mix)

EPC II 시설 (30 MW_{th} 연구용원자로)의 OIL1_γ(t,mix)

03

3.

EPC I 시설 (3,000 MW_{th} 발전용원자로)의 OIL1_γ(t,mix)

Fig 17. OIL1_v(t,mix) for NPP

19

🔽 OILs 계산결과에서의 그래프 꺾임 형태

03

The reason that some of the OIL(t,mix) functions are not smooth is **the 'min' function** used in the calculation of the DA(t,mix)

Fig 18. A not smooth part of OIL1γ(t,mix) for HANARO

$$DA_{OIL1_{\gamma}}(t,mix) = min\left\{ \left(\frac{GC(Urgent, E, 7d)}{\sum_{i} (E_{grd-scenario,i}(7d) \times RA_{i}(t,mix))} \right), \left(\frac{GC(Urgent, H_{fetus}, 7d)}{\sum_{i} (H_{fetus, grd-scenario,i}(7d) \times RA_{i}(t,mix))} \right) \right\} \quad \dots (3)$$

경과시간 0.1 - 85.1일의 최솟값
 A_{OIL1γ,Hfetus}(t,mix) 이용
 OIL1_γ(t,HANARO_TID14844) (-)

• 경과시간 85.1 - 365.0일의 최솟값 A_{OIL1γ,E}(t,mix) 이용 OIL1_γ(t,HANARO_TID14844) (-)

∴ 'min'함수 이용으로 인한 꺾임 확인

04 CONCLUSIONS

기존 계산툴과 개발된 계산툴을 이용한 OIL1_r(t,mix) 계산 상대편차 최대 +0.8% 이내 → 계산툴 구조 검증

동일 핵종 재고량 및 방출분율에 대한

EPC II 연구용원자로인 HANARO의 경우, EPC I 기준 OIL1, 보다 낮은 수준의 OIL1, 적용 필요

•

- 한국원자력연구원 부지내 다목적 연구용원자로 HANARO 최대가상사고 시나리오 기반 (채널유동차단사고) 재고량 및 방출분율 데이터 구축
- HANARO 최대가상사고 시나리오 기반 선원항 구축

CONCLUSIONS

결론

04

- : 기존 IAEA 계산툴 기능 확장 원자력시설별 재고량 커스텀 기능 등 추가
- EPC I 기준의 기존 IAEA OILs 계산툴 구조 벤치마킹

비원전시설(연구용원자로)의 OILs 계산툴 개발

EPC II 시설인 연구용원자로 HANARO에 대한 운영개입준위 계산툴 개발 및 검증

 • 연구용원자로에 대한 다양한 재고량 데이터 추가 목적에 따라 다양한 연료 특성, 열출력의 연구용원자로
 → 연구용원자로 운영개입준위 계산툴 적용 범위 확대

EPC II 연구용원자로의 다양한 유형의

선원항 평가 및 운영개입준위 계산

원자로 외 다양한 원자력시설의 선원항 평가
 핵주기시설 및 산업용 대단위 조사 시설 등에 대한
 최대가상사고 시나리오 선원항 평가

원자로 외 EPC II 및 EPC III 시설의

선원항 평가 및 운영개입준위 계산

연구용원자로에 대한 다양한 방출분율 데이터 추가
 연구용원자로의 실제 사고 데이터 기반 방출분율 추가
 : Idaho Falls USA (1961), Chalk River Canada (1958) 등

원자로 외 다양한 원자력시설의 운영개입준위 계산
 다양한 원자력시설의 운영개입준위 계산을 통해
 실질적으로 이용가능한 운영개입준위 단일 기준 제안

REFERENCES

- 1) International Atomic Energy Agency. (1997). Generic Assessment Procedures for Determining Protective Actions During a Reactor Accident. IAEA-TECDOC-955. IAEA. Vienna.
- 2) International Atomic Energy Agency. (2007). Arrangements for Preparedness for a Nuclear or Radiological Emergency. IAEA Safety Standards Series No. GS-G-2.1. IAEA. Vienna.
- 3) International Atomic Energy Agency. (2008). Derivation of the Source Term and Analysis of the Radiological Consequences of Research Reactor Accidents. Safety Reports Series No. 53. IAEA. Vienna.
- 4) International Atomic Energy Agency. (2015). Preparedness and Response for a Nuclear or Radiological Emergency. IAEA Safety Standards Series No. GSR Part 7. IAEA. Vienna.
- 5) International Atomic Energy Agency. (2017). Operational Intervention Levels for Reactor Emergencies. Emergency Preparedness and Response. IAEA. Vienna.
- 6) Korea Atomic Energy Research Institute. (1996). Safety Analysis Report for Hanaro (Vol. 4). (Report No. KAERI/TR-710/96/V4).
- 7) Lee, K Y. (2019). Review of radionuclide release factors for radiation source term in the event of nuclear research facility accidents. Korea Atomic Energy Research Institute. (Report No. KAERI/TR-7594/2019).
- 8) DiNunno, J. J. (1962). Calculation of Distance Factors for Power and Test Reactor Sites: Technical Information Document (Vol. 14844). United States Atomic Energy Commission, Division of Technical Information.
- 9) L. Soffers et al., (1995). Accident Source Terms for Light-Water Nuclear Power Plants. NUREG-1465, Final Report, U.S. Nuclear Regulatory Commission.
- 10) K. Y. Lee, H. C. Lee, B. S. Kim, J. S. Kim, M. J. Kang, & P. G. Choi. (2016). Study on the radioactive material removal strategy of the reactor room in case of HANARO maximum hypothetical accident. Proceedings of the Korean Association for Radiation Protection, 484-485.
- 11) Chae, H., Lee, C. S., Park, J. M., Kim, H., & Kim, Y. S. (2018). Performance of U3Si–AI dispersion fuel at HANARO full-power condition. *Nuclear Engineering and Technology*, *50*(6), 899-906.

감사합니다

질의응답

