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1. Introduction 

 
Redundancy is one of principles in nuclear power 

plant design. However, the redundancy can be threatened 
by common cause failure (CCF), which all or partial 
group of components becomes unavailable due to 
common cause. Therefore, it is recognized that the 
common cause events are significant risk contributors for 
the nuclear power plant. To quantify the frequency of 
CCF events, NUREG/CR-5485 [1] propose several 
models, alpha factor model, multiple Greek letter model, 
and so on. Among the analysis models, alpha factor 
model is widely used because of its statistical efficiency. 
As a part of probabilistic safety assessment (PSA), the 
model parameters for CCF events have uncertainties, and 
it should be quantified same as parameters of other basic 
events in the PSA model. INL/ETX-21-62940 [2] 
provide estimated CCF model parameters and their 
uncertainty distributions based on operational data and 
prior distributions provide by INL/EXT-21-43723 [3]. 
Although the prior distributions are derived based on the 
homogeneous assumption in the industry, it is possible 
that the performances of components have plant-to-plant 
variability. Empirical Bayes method is widely used 
model to analyze plant-to-plant variability in nuclear 
industry for component reliability data [4].  

In this paper, the Empirical Bayes method is applied 
to statistical model for alpha factor model. And then, the 
result is compared to that of conventional constrained 
non-informative distribution (CNID) and Jeffrey’s non-
informative distribution (JNID) using an example data 
set. 

 
2. Empirical Bayes for alpha factor model 

 
Alpha factor model is one of CCF models that the 

probability of CCF event is represented as proportional 
to the total component failure probability. For a 
staggered testing scheme, the probability of i 
components failures in the common cause component 
group (CCCG) of size k is  
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where 𝑝𝑝𝑡𝑡  is total component failure probability. 
Empirical Bayes model is a combination of 

hierarchical Bayes model and maximum likelihood 
model. In general, two-step approach is applied to the 
Empirical Bayes model for representing plant-to-plant 
variability and plant specific uncertainty. Therefore, the 

uncertainties are considered until parameters of the 
statistical model and the hyperparameters are determined 
by maximum likelihood estimator for the observation. 
For the alpha factor model, the observation process 
follows multinomial distribution and the uncertainty 
distribution for the multinomial distribution is modeled 
as Dirichlet distribution because the Dirichlet 
distribution is conjugate prior for the multinomial 
distribution. Then, the likelihood function for single 
plant observation is  
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where 𝑛𝑛  is total number of observations, 𝑘𝑘  is the 
CCCG size, 𝑥𝑥𝑖𝑖 ’s are the number of observations for i 
components failures in the CCCG, 𝐁𝐁 is a beta function, 
𝛼𝛼𝑖𝑖′𝑠𝑠 are alpha factors, and 𝐴𝐴𝑖𝑖′𝑠𝑠 are the hyperparameters. 

If there are N number of plants, the likelihood function 
can be represented as 
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where 𝑥𝑥𝑖𝑖𝑖𝑖   is the number of observations for i 
components failures in j-th plant. 

Then, the derivatives of the log-likelihood, which is 
used to derive the maximum likelihood estimator for the 
hyperparameters, are as follows: 
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where 𝑁𝑁 is a digamma function, and 𝐴𝐴0 is sum of all 
the hyperparameters. 

The maximum likelihood estimators can be derived to 
solve the equation that all the derivatives in Eq. (4) equal 
to zero. The equation has a single solution unless there 
are no difference between the plants, which is 
homogeneous condition. To estimate plant specific CCF 
model parameters, the prior distribution which is derived 
by Empirical Bayes is updated by plant specific data. As 
the Dirichlet distribution is conjugate prior for the 
multinomial distribution, the updated posterior 
distribution is also Dirichlet distribution, and the 
parameters are updated by the observed data.  
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where 𝑨𝑨� is the maximum likelihood estimator. 
 

3. Application 
 
In the uncertainty analysis for CCF model parameters, 

homogeneous assumption is generally used. JNID used 
when there is little information about the model 
parameters, and CNID is used to constrained expected 
value for the prior distribution [4]. When there is 
variability in the plants, the uncertainties for the 
parameters and the following CCF probabilities can be 
underestimated. To compare the effects of population 
variability, an example data set which is based on the 
total CCF data collected from 1997 to 2015 is used [3]. 
The number of plants is assumed as 5 and the data is 
randomly distributed to the plants. As the data is 
collected from the plants which have different number of 
components, the data is mapping to the plant which have 
4 redundant components. Table I shows the adjusted 
CCF data and Table Ⅱ shows the calculated parameters 
with respect to the model parameters based on the data.  
 

Table I: Adjusted CCF events observation data 

Plant 𝑛𝑛1 𝑛𝑛2 𝑛𝑛3 𝑛𝑛4 
1 2201.1 3.1746 4.6912 1.6519 
2 645.54 20.076 4.7146 5.6078 
3 1836.6 23.810 4.9429 1.8677 
4 452.64 19.044 4.6282 0.9440 
5 689.77 14.833 6.8804 4.8016 

 
Table Ⅱ: Model parameters for the prior distributions 

 𝐴𝐴1 𝐴𝐴2 𝐴𝐴3 𝐴𝐴4 
EB 157.62 2.7172 1.2365 0.8018 

CNID 90.676 1.2597 0.4024 0.2315 
JNID 0.5 0.5 0.5 0.5 

 
As the model parameters have high dimensions, 

marginal distribution is widely used to represent 
uncertainties of the parameters. The marginal 
distribution for the Dirichlet distribution is beta 
distribution. 

𝛼𝛼𝑖𝑖  ~ 𝐵𝐵𝑙𝑙𝑙𝑙𝐵𝐵(𝐴𝐴𝑖𝑖,𝐴𝐴0 − 𝐴𝐴𝑖𝑖)  (5) 
Fig. 1 to Fig. 4 show the marginalized posterior 

Dirichlet distribution for the Plant 1 specific parameters 
with respect to the prior distributions. It is shown that the 
model parameters expect for 𝛼𝛼1  are underestimated 
when the homogeneous assumption is used. It means that 
not only the uncertainties of the parameters but also the 
expected values for the CCF probabilities are 
underestimated.  

 
Fig. 1. Uncertainty distribution for the CCF parameter 𝛼𝛼1  

 
Fig. 2. Uncertainty distribution for the CCF parameter 𝛼𝛼2  

 
Fig. 3. Uncertainty distribution for the CCF parameter 𝛼𝛼3  

 
Fig. 4. Uncertainty distribution for the CCF parameter 𝛼𝛼4  

 
3. Conclusions 

 
In the probabilistic safety assessment, there are two 

types of uncertainties, aleatory uncertainty and epistemic 
uncertainty. Although CCF event is related to aleatory 
uncertainty, the epistemic uncertainty for the CCF event 
should be considered. In the conventional analysis, the 



Transactions of the Korean Nuclear Society Spring Meeting 
Jeju, Korea, May 9-10, 2024 

 
 
homogeneous assumption is used because of 
mathematical convenience. However, there are 
variability in the population, especially environmental 
cause CCF events. In this paper, the prior distribution 
which consider the population variability is derived 
based on empirical bayes method and the result is 
compared to other prior distributions with an example 
data set. It is shown that the uncertainties and the 
estimated CCF probability can be underestimated when 
the homogeneous assumption is used. Therefore, the 
homogeneous assumption should be carefully used, and 
the population variability should be considered. 
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