

Fluence Monitor Design

for Irradiation Test at CT and IP hole of HANARO

Junesic Park*, Seong Woo Yang, Sung Jae Park, Kee Nam Choo, Yoon Taeg Shin, Chul Yong Lee, Ye Eun Na Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong, Daejeon, Republic of Korea

Transactions of the Korean Nuclear Society Spring Meeting Jeju, Korea May 9–10, 2024

Introduction

- Determination of irradiation condition \rightarrow Fabrication of irradiation device (e.g., capsule) \rightarrow Irradiation \rightarrow Measurement of conditions (dose/temperature/etc.) \rightarrow Material analysis Role of HANARO Members
- Playing a significant role in the development or verification of new materials and system in the field of nuclear energy industries.
- domestic user's requirements.
- The neutron dose on the samples from irradiation test at HANARO has been evaluated using both FM measurements and MCNP code calculation.
- Discrepancy of 10–20% has been shown between the measurement and calculation.

HANARO : High-flux Advanced Neutron Application ReactOr FM : Fluence Monitor MCNP : Monte Carlo N-Particle

- In 2024, new irradiation tests for nuclear fusion reactor materials and, validation of the quantitative analysis of elements for non-proliferation are scheduled at HANARO.
- FMs such as Ni, Fe, Nb and Co wire for thermal and fast neutron measurements was addressed for these tests.

Dose Evaluation Methodology using FM for long-term irradiation

Product loss due to reactions

Depletion of target atoms

 Considerations in long-term irradiation test Details are described in ASTM E261

Evaluation & Fabrication (23M-01F "ARAA capsule" case)

Selected FMs for fast neutron dose measurement

Element	Reaction	Energy response range (MeV)			σ uncertainty	Gamma
		Low	Median	High	(%)	energy (keV)
Nb	⁹³ Nb(n,n') ^{93m} Nb	0.951	2.57	5.79	3.01	31
	⁹³ Nb(n,g) ⁹⁴ Nb	_	-	-	_	703
	⁹⁴ Nb(n,g) ⁹⁵ Nb	_	-	-	_	766
Ti	⁴⁷ Ti(n,p) ⁴⁷ Sc	1.70	3.63	7.67	3.77	159
	⁴⁶ Ti(n,p) ⁴⁶ Sc	3.70	5.72	9.43	2.48	889, 1121
	⁴⁸ Ti(n,p) ⁴⁸ Sc	5.92	8.06	12.3	2.56	
	⁴⁷ Ti(n,α) ⁴⁴ Ca	2.80	5.10	9.12	-	
Ni	⁵⁸ Ni(n,p) ⁵⁸ Co	1.98	3.94	7.51	2.44	811, 864, 167
	⁵⁸ Ni(n,α) ⁵⁵ Fe	2.74	5.16	8.72	-	126
	⁶⁰ Ni(n,p) ⁶⁰ Co	4.72	6.82	10.8	10.3	1173, 1332
Fe	⁵⁴ Fe(n,p) ⁵⁴ Mn	2.27	4.09	7.54	2.12	835
	⁵⁶ Fe(n,p) ⁵⁶ Mn	5.45	7.27	11.3	2.26	
	⁵⁶ Fe(n,α) ⁵³ Cr	5.19	7.53	11.3	-	
Cu	⁶³ Cu(n,α) ⁶⁰ Co	4.53	6.99	11.0	2.36	1173, 1332

- Fabrication of FM
 - All FMs were fabricated to weigth ~200 μ g, due to impractically small size of FM below 200 μ g.
 - Two kinds of containers were used.

- Quartz container was sealed under a vacuum condition (about 0.001 Torr) to minimize unwanted activation.

- Each specimen is distinguished by a pattern engraved on the surface of the container through slight abrasion.
- Positioning of FM

specimen

Gamma-detectable isotope Short (for long-term test) half-life isotope Stable isotope

• FM activities

- Condition : 56 days (EFPD) irradiation at CT hole, 1 year cooling
- Specific activity of all FMs was ranged between 0.002 and 0.5 Ci/g.

- Presence of FM holes does not create distortion significantly in the neutron field.

Conclusion

- This method has been previously confirmed to

ensure no heat transfer issues with the specimen.

- We have fabricated FMs for irradiation test capsules newly loaded into the HANARO reactor in 2024
- Through ongoing experiments using various metals, we plan to enhance the accuracy of characterization of HANARO irradiation holes and performance evaluation of irradiation test in the future.

 \times This work was supported by the Korea government (MSIT) (1711173832).