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Materials in Nuclear Systems Lab.Background

▪ Cyclic loading + corrosive environment → corrosion fatigue (CF)

▪ CF has caused some cracking incidents in austenitic stainless steel (SS)

components

▪ Modeling CF crack growth rate is necessary

✓ Empirical models incorporating the concept of fracture mechanics have been developed

✓ There are inconsistencies among these models regarding the considered influencing factors

and model forms

✓ Performing model simulations involving numerous variables through traditional empirical

methods is hard
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Materials in Nuclear Systems Lab.Background

▪ Machine learning

✓ Ability to effectively handle tons of input variables

✓ Data-driven → no pre assumption and often no physical knowledge are required

▪ Machine learning model = black box

✓ High complexity

✓ Low interpretability/explainability

?

ML model

Inputs Outputs 
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Materials in Nuclear Systems Lab.Background

▪ Black box explainer/interpreter: SHAP (Shapley additive explanation) [1]

✓ Linear regression at local level (e.g., per individual data point). The output ෝ𝒚 is:

✓ 𝒚𝟎 is the baseline output, 𝜽𝒊𝒙𝒊 is the contribution of feature 𝒙𝒊

Ex) Prediction of mortality risk [1]

ෝ𝒚 = 𝒚𝟎 + 𝜽𝟏𝒙𝟏 + 𝜽𝟐𝒙𝟐 +⋯+ 𝜽𝒏𝒙𝒏

[1] Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 20, 4765–4774 (2017).
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Materials in Nuclear Systems Lab.Background

▪ Black box explainer/interpreter: SHAP (Shapley additive explanation)

✓ SHAP values show the effect of BP on the mortality risk

✓ Vertical spread is due to interaction effect

SHAP values for systolic BP  as a function of systolic BP [2]

[2] Lundberg SM, Erion GG, Lee SI. Consistent individualized feature attribution for tree ensembles. arXiv preprint arXiv:1802.03888. 2018 Feb 12.



6

Materials in Nuclear Systems Lab.Objectives

▪ Applicability of ML model for prediction of CF crack growth rate

▪ Explain ML model
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Materials in Nuclear Systems Lab.Database

▪ 806 experimental data of CF crack growth rate in AuSSs [3-5]

✓ 632 data of 304 SS and 174 data of 316 SS

✓ Data were from tests in pressurized water reactor (PWR) and hydrogen water chemistry-

boiling water reactor (HWC-BWR)

[3] Nomura Y, Tsutsumi K, Kanasaki H, Chigusa N, Jokati K, Shimizu H, Hirose T, Ohata H. Fatigue crack growth curve for austenitic stainless steels in PWR envir

onment. Pres. Ves. Pip. 2004;480:63–70.

[4] Cipolla RC, Bamford WH, Hojo K, Nomura Y. Technical Basis for Revision of Code Case N-809 on Reference Fatigue Crack Growth Curves for Austenitic Stai

nless Steels in Pressurized Water Reactor Environments. In Pressure Vessels and Piping Conference (Vol. 85314 p. V001T01A001); 2021.

[5] Barron KC and Paraventi DJ. A Fatigue Crack Growth Model for Type 304 Austenitic Stainless Steels In a Pressurized Water Reactor Environment. 

In Pressure Vessels and Piping Conference (Vol. 85314 p. V001T01A015); 2021.
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Materials in Nuclear Systems Lab.Database

▪ Summary of database → 15 input features

Variables Means SD Min Max % Missing values

Stress intensity range,  ∆𝐊 (MPam) 18.4 9.77 2.35 46 0

Load ratio, R 0.387 0.3 0.1 0.95 0

Rising time, 𝐭𝐫 (s) 316.79 1597.14 1 34020 0

Water temperature, T (℃) 280.72 41.81 100 338 0

Dissolved hydrogen, DH (ppm) 2.77 0.78 0.125 4.5 0

Molybdenum content, Mo (wt%) 0.7 0.95 0.00 2.3 29

Carbon content, C (wt%) 0.035 0.012 0.005 0.07 0

Chromium content, Cr (wt%) 18.41 1.15 16.39 20.36 10

Nickel content, Ni (wt%) 9.96 1.16 8.06 12.55 10

Manganese content, Mn (wt%) 1.56 0.17 1.11 1.93 10

Silicon content, Si (wt%) 0.36 0.11 0.03 0.71 10

Phosphorous content, P (wt%) 0.023 0.006 0.005 0.034 10

Sulphur content, S (wt%) 0.002 0.001 0.001 0.007 0

Yield strength at 25 ℃, 𝛔𝐘𝐒 (MPa) 269.54 37.1 240 434 30

Tensile strength at 25 ℃, 𝛔𝐮 (MPa) 560.99 24.95 531 601 12

Crack growth rate, Τ𝐝𝐚 𝐝𝐍 (m/cycle) 𝟒. 𝟑 × 𝟏𝟎−𝟕 𝟒. 𝟓 × 𝟏𝟎−𝟕 𝟏. 𝟎 × 𝟏𝟎−𝟏𝟎 𝟐. 𝟗 × 𝟏𝟎−𝟔 0
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Materials in Nuclear Systems Lab.Method

▪ Modeling procedure

Experimental FCGR data

Training set Test set

ML model training

Feature selection
& Hyperparameter tuning

Evaluation of model performance
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Materials in Nuclear Systems Lab.Method

▪ Considered machine learning algorithms [6]

Random forest Boosted decision trees = Gboost, XGBoost, and CatBoost

Support Vector Regression
K-Nearest Neighbors

[6] Géron A. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. " O'Reilly Media, Inc."; 2022 Oct 4.
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Materials in Nuclear Systems Lab.Results

▪ Data splitting 

✓ Train : test = 80% : 20%

✓ Variables in both subsets should possess approximately similar distributions → Kolmogorov -

Smirnov test

✓ Missing value imputation was performed using k-NN imputer
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Materials in Nuclear Systems Lab.Results

▪ Feature correlations

✓ No significant multicollinearity

✓ It is ok to take all features

▪ Feature importance

✓ Feature importance from       

random forest was used

✓ Loading parameters are the  

most important
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Materials in Nuclear Systems Lab.Results

▪ Feature selection

✓ Removing features does not decrease MSE

✓ It seems ok to take all features
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Materials in Nuclear Systems Lab.Results

▪ Hyperparameter tuning
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Materials in Nuclear Systems Lab.Results

▪ Tunned hyperparameters

▪ Model training

✓ ML models were trained with selected hyperparameters and input features

Model Candidate space Default value Selected value

RF
ND = [25, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500]

TD = [10, 12, 14, 16, 18, 20, 22, 24, 26, 30, None]

ND = 100

TD = None*

ND = 200

TD = 22

GB
ND = [25, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500]

TD = [3, 4, 5, 6, 8, 10, 12, 14, 16]

ND = 100

TD =3

ND = 100

TD = 5

XGB
ND = [25, 50, 75, 100, 150, 200, 250, 300, 350, 400, 450, 500]

TD = [3, 4, 5, 6, 8, 10, 12, 14, 16]

ND = 100

TD = 6

ND = 25

TD = 6

CB

ND = [250, 500, 750, 1000, 1250, 1500, 1750, 2000, 2250, 2500, 2750, 30

00]

TD = [3, 4, 5, 6, 7, 8, 9, 10]

ND = 1000

TD = 6

ND = 2500

TD = 8

SVR
C = [1, 5, 10, 25, 50, 100, 200, 300, 400, 500]

 = [3, 2.5, 2, 1.5, 1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001, scale]

C = 1

 = scale**

C = 1250

 = 0.01

k-NN
k = [2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40]

W = [uniform, distance]

ND = 5

TD = uniform

ND = 2

TD = distance

Note: * The default TD of RF, i.e., ‘None’, implies that each DT is grown until all leaves are pure.

** The default  of SVR, i.e., ‘scale, implies that  = 1/(number of features  feature variance).
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Materials in Nuclear Systems Lab.Results 

▪ Model evaluation on test set

RF GBoost XGBoost

CatBoost SVR
k-NN
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Materials in Nuclear Systems Lab.Results

▪ Model evaluation on test set

Model

MAPE MAE MSE RMSE 𝐑𝟐

Training Test Training Test Training Test Training Test Training Test

RF 0.005 0.012 0.039 0.086 0.004 0.02 0.063 0.141 0.994 0.97

GB 0.006 0.012 0.041 0.086 0.003 0.018 0.056 0.136 0.995 0.972

XGB 0.007 0.013 0.046 0.091 0.006 0.019 0.078 0.139 0.991 0.971

CB 0.005 0.011 0.035 0.074 0.002 0.015 0.05 0.121 0.996 0.978

SVR 0.012 0.016 0.083 0.111 0.013 0.032 0.116 0.178 0.98 0.952

k-NN 0.001 0.014 0.008 0.097 0.001 0.026 0.031 0.161 0.999 0.961
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Materials in Nuclear Systems Lab.Results

▪ Comparison to empirical models

✓ JSME Code [3]

✓ ASME Code [4]

Τ𝑑𝑎 𝑑𝑁 = 1.61 × 10−13𝑇0.63𝑡𝑅
0.33∆𝐾3.0 1 − 𝑅 −1.56

Τ𝑑𝑎 𝑑𝑁 = 𝐶0 ∆𝐾
2.3

𝐶0 = 𝐶𝑆𝑇𝑆𝑅𝑆𝐸𝑁𝑉

𝐶 = 9.10 × 10−6 (Type 304/316)

𝐶 = 1.39 × 10−5 (Type 304L/316L)

𝑆𝑇 = exp −
2516

𝑇+273
(150 C≤T ≤343 C)

𝑆𝑇 = 3.39 × 105 exp −
2516

𝑇+273
− 0.0301𝑇 (𝑇≤150C)

𝑆𝑅 = 1 + 1.53𝑅3 (nominal carbon grade)

𝑆𝑅 = 1 + 1.11𝑅3 (low carbon grade)

𝑆𝐸𝑁𝑉 = 𝑡𝑅
0.3 (𝑡𝑅 < 1s, use 𝑡𝑅 = 1s)

∆𝐾𝑡ℎ= 5.6(1 − 0.7𝑅)

✓ Baron’s model [5]

Τ𝑑𝑎 𝑑𝑁 = 𝐶0 ∆𝐾
𝑛

𝐶0 = 𝐶𝑆𝑇𝑆𝑅𝑡𝑅
0.227

∆𝐾𝐶= 6.737 MPa m

𝑛 = ቊ
5.08 (∆𝐾 < ∆𝐾𝐶)
2.46 (∆𝐾 ≥ ∆𝐾𝐶)

𝐶 = ൝
5.005 × 10−8 (∆𝐾 < ∆𝐾𝐶)

7.499 × 10−6 (∆𝐾 ≥ ∆𝐾𝐶)
(wrought metals)

𝐶 = ൝
2.791 × 10−8 (∆𝐾 < ∆𝐾𝐶)

4.181 × 10−6 (∆𝐾 ≥ ∆𝐾𝐶)
(weld metals)

𝑆𝑇 = exp −
2403

𝑇+273

𝑆𝑅 = (1 − 𝑅)−0.559

[3] Nomura Y, Tsutsumi K, Kanasaki H, Chigusa N, Jokati K, Shimizu H, Hirose T, Ohata H. Fatigue crack growth curve for austenitic stainless steels in PWR envir

onment. Pres. Ves. Pip. 2004;480:63–70.

[5] Cipolla RC, Bamford WH, Hojo K, Nomura Y. Technical Basis for Revision of Code Case N-809 on Reference Fatigue Crack Growth Curves for Austenitic Stai

nless Steels in Pressurized Water Reactor Environments. In Pressure Vessels and Piping Conference (Vol. 85314 p. V001T01A001); 2021.

[5] Barron KC and Paraventi DJ. A Fatigue Crack Growth Model for Type 304 Austenitic Stainless Steels In a Pressurized Water Reactor Environment. 

In Pressure Vessels and Piping Conference (Vol. 85314 p. V001T01A015); 2021.
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Materials in Nuclear Systems Lab.Results

▪ Comparison to empirical models

✓ Baron’s model is the best

✓ ML model can be even better

Model MAPE MAE MSE RMSE 𝐑𝟐

JSME 0.035 0.249 0.156 0.394 0.765

ASME 0.026 0.19 0.1 0.316 0.85

Baron 0.028 0.19 0.066 0.258 0.9

JSME ASME Baron
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Materials in Nuclear Systems Lab.Results

▪ Comparison to empirical models
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Materials in Nuclear Systems Lab.Results

▪ Why ML model is better than empirical model?

✓ SHAP values for each feature are computed✓ Model explanation
Baron

CatBoost

SHAP value Mean of absolute SHAP value

SHAP value Mean of absolute SHAP value
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Materials in Nuclear Systems Lab.Results

▪ Why ML model is better than empirical models?

✓ Slope of ∆𝐾 dependence: 

Τ𝑑𝑎 𝑑𝑁 = 𝐶0 ∆𝐾
2.2 is better      

than Τ𝑑𝑎 𝑑𝑁 = 𝐶0 ∆𝐾
2.46

✓ Slope of T dependence:

𝑆𝑇 = exp −
1899

𝑇+273
is better      

than 𝑆𝑇 = exp −
2403

𝑇+273

✓ Vertical spread of SHAP   

values→interaction effects
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Materials in Nuclear Systems Lab.Results

▪ Interaction effects

✓ At near threshold, the

decrease of CGR with

∆𝐾 is steeper at lower

R

✓ Wide spread of SHAP

values for R is due to

low ∆𝐾

✓ Different Arrhenius

dependences due to C

contents

✓ Higher slope of CGR

vs ∆𝐾 for lower C

steels
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Materials in Nuclear Systems Lab.Summary and future works

▪ Conclusion:

✓ Some commonly used supervised ML algorithms (GBoost, XGBoost, CatBoost) were considered

to find the best suited one for the purpose of the current study.

✓ Each of them has been shown to perform reasonably well. Among the trained ML models,

CatBoost model, has been shown to outperform the other models.

✓ More accurate prediction for the CF crack growth rate of austenitic SSs can be attained

through the implementation of ML techniques.

✓ SHAP successfully explain why ML model is better than empirical models

▪ Future work:

✓ Implementation of ML algorithms for other degradation mechanism, i.e., stress corrosion

cracking
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Materials in Nuclear Systems Lab.

Thank You for 

Your Attention


	기본 구역
	Slide 1
	Slide 2: Background
	Slide 3: Background
	Slide 4: Background
	Slide 5: Background
	Slide 6: Objectives
	Slide 7: Database
	Slide 8: Database
	Slide 9: Method
	Slide 10: Method
	Slide 11: Results
	Slide 12: Results
	Slide 13: Results
	Slide 14: Results
	Slide 15: Results
	Slide 16: Results 
	Slide 17: Results
	Slide 18: Results
	Slide 19: Results
	Slide 20: Results
	Slide 21: Results
	Slide 22: Results
	Slide 23: Results
	Slide 24: Summary and future works
	Slide 25


