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1. Introduction 

 
Operating history of LWRs has revealed that fatigue 

was responsible for some cracking incidents in piping, 

valves, and nozzles used in the reactors, which are 

made of austenitic stainless steels (SSs) [1]. Accurately 

predicting the corrosion fatigue (CF) crack growth rate 

of austenitic stainless SSs is crucial to ensure safe plant. 

This study proposes a machine learning (ML) approach 

for such a purpose, as an alternative to the existing 

empirical models [2-4]. 

 

2. Methods and Results 

 

2.1 Data preparation and preprocessing 

 

We have collected 806 data on the CF crack growth 

rates of austenitic SSs in PWR and HWC-BWR water 

environments from various sources [2-4]. These data 

were obtained from fracture mechanics tests on Types 

304, 316, 304L, and 316L wrought SSs and their 

respective weld metals. The input features include 11 

element contents (Ni, Cr, Mo, C, Mn, Si, N, P, S, Co, 

and Cu), 3 material properties ( ,  and RA), 2 

environmental parameters (DH and T), and 3 loading 

parameters ( , , and ). 

Data preprocessing included feature selection, data 

splitting, missing value imputation, and data scaling. 

Feature selection was performed to remove features 

with excessive number of missing values (e.g., > 50%). 

Considering this, features Cu, Co, N, and %RA were 

removed. The dataset was then split into two subsets, 

i.e., the training (75%) and hold-out test sets (25%). 

Missing value imputation was performed using the 

average value of each variable. The features were 

standardized based on their mean and standard 

deviation in the training set. The logarithmic scaling 

was used to transform the crack growth rate values. In 

the end, 15 features were considered for this analysis. 

 

2.2 ML algorithms 

 

Some of the most widely used algorithms, including 

gradient boosting (GB), extreme gradient boosting 

(XGB), categorical boosting (CB). GB [5] implements 

the boosting technique, which builds decision trees 

(DTs) sequentially and each newly built DT tries to 

correct the previous ones. XGB and CB are variants of 

GB. XGB uses more enhanced regularization 

techniques to combat overfitting and parallelization 

during the splitting events in a DT to accelerate the 

training speed [6]. CB implements an alternative 

boosting algorithm called ordered boosting and a 

specific procedure to process categorical features 

efficiently [7] 

 

2.3 Evaluation metrics 

 

Several evaluation metrics were used to measure the 

prediction accuracies of ML models. These metrics 

include mean absolute error (MAE), mean squared error 

(MSE), and coefficient of determination (R2). MAE, 

MSE, and R2 are respectively given as:  

 

 (1) 

 (2) 

  (3) 

 

where  and denote the i-th predicted and actual 

output values, respectively. 

 

2.4 Hyperparameter tuning 

 

Two key hyperparameters of each algorithm were 

first tuned using the grid search method combined with 

10-fold cross-validation. These include number of DTs 

(ND) and maximum tree depth (TD). MSE was used as 

evaluation metric in the cross-validation. The candidate 

spaces, default and selected values of hyperparameters 

for each algorithm are listed in Table 1. It is worth 

mentioning that most selected values are different from 

the default ones, confirming the necessity of 

hyperparameter tuning. 

 

2.5 Evaluation of trained ML models 

 

ML algorithms with their best hyperparameter values 

were trained using the training set. The trained ML 

models were then evaluated on the hold-out test set. 

This step was the final model evaluation to determine 
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the best suited ML model to predict the CF crack 

growth rate in austenitic SSs.  

 

Table I: Default and selected hyperparameter values for ML 

algorithms 

Model Default value Selected value 

GB 
ND = 100 

TD = 3 

ND = 200 

TD =5 

XGB 
ND = 100 

TD =6 

ND = 50 

TD = 5 

CB 
ND = 1000 

TD = 6 

ND = 2250 

TD = 6 

 

 

 

Table II: Evaluation metrics for ML and empirical models 

Model MAE MSE 
 

GB 0.102 0.024 0.963 

XGB 0.109 0.033 0.95 

CB 0.09 0.019 0.971 

Empirical 

model [4] 
0.206 0.077 0.883 

 

 

 

 
Fig. 1. Parity plot of the CB model. 

 

 

Table 2 compares the evaluation metrics for the 

tested ML models computed on the hold-out test set. It 

was shown that all trained ML models predicted the CF 

crack growth rate in austenitic SSs exceptionally well. 

As a comparison, ana empirical model by Baron et al. 

[4] was also evaluated. The ML models clearly 

performed better than the empirical model. Among ML 

models, the CB model performed the best. Figure 1 

shows the parity plots for the CB model comparing the 

predicted and actual CF crack growth rates in the 

training and hold-out test sets. The model appeared 

predict both seen and unseen data almost equally well, 

indicating that overfitting did not occur.  

 

3. Conclusions 

 

Some commonly used supervised ML algorithms 

(GB, XGB, CB) were considered to find the best suited 

one for the purpose of the current study. Each of them 

has been shown to perform reasonably well. Among the 

trained ML models, CB model, trained with an 

innovative and advanced algorithm, has been shown to 

outperform the other models. The results of the current 

study demonstrated that the more accurate prediction 

for the CF crack growth rate of austenitic SSs can be 

attained through the implementation of ML techniques.  
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