Development of a Time-Series Surrogate Model for Predicting System Dynamics in KAIST-MMR under Load-following Operation

Transactions of Korean Nuclear Society Spring Meeting

Presenter : Jeong Yeol Baek Advisor : Prof. Jeong Ik Lee

Nuclear Power & Propulsion Lab Dept. of Nuclear & Quantum Engineering Korea Advanced Institute of Science and Technology

2024.05.10

Contents

01. Introduction

- Background and motivation
- Research scope

02. Supervised-learning for Surrogate Model

- Data production
- Time-series surrogate model

03. Reinforcement-learning for Real-time Control

- Pre-training using surrogate model

04. Further Works

- Transfer learning using system analysis code
- Application to real world system

Introduction Background and motivation

KAIST-MMR (Micro Modular Reactor)

- > 10 MW_e class S-CO₂ direct cycle in combination with a fast neutron nuclear reactor
- Long life core (20 yrs) and enhanced safety feature
- > Full modularization (reactor core, power conversion system)
- > Transportable and installed to generate electricity in extreme environments (remote site)

< Concept of KAIST-MMR >

Introduction Background and motivation

KAIST-MMR (Micro Modular Reactor): load following capability

- Reactor power control & power conversion system control
- > S-CO₂ coolant: compressible fluid and large density variations with pressure changes
- > Passive load following operation using coolant inventory control

Introduction

Background and motivation

PID-based control of KAIST-MMR for load following operation

Scenario (ramp rate & operation range) based automatic controller design \geq under limited optimization Control objective \geq Stability, - Regulation: Maintain a steady state value -Performance - Tracking: Follow a prescribed trajectory optimization Control parameter - Compressor inlet temperature $E_{CIT} = \frac{CIT(t) - CIT_{design}}{CIT_{design}}, \ d\dot{m}_c = k_p E_{CIT} + k_i \int_0^t E_{CIT}(t) \, dt + k_d \, \frac{dE_{CIT}}{dt}$ - Turbine rotational speed $\begin{aligned} \frac{d\omega}{dt} &= \frac{(W_{turb} - W_{comp})\varepsilon_{generator} - W_{generator}}{\sum_{i} l_{i}\omega} \\ E_{TBP} &= \frac{\omega(t) - \omega_{design}}{\omega_{design}}, \ f_{TBP} = k_{p}E_{TBP} + k_{i}\int_{0}^{t}E_{TBP}(t) \, dt + k_{d}\frac{dE_{TBP}}{dt} \end{aligned}$ Optimization parameter Inventory $E_{IV} = \frac{M(t) - M_{target}}{M_{target}},$ $\dot{m}_{in} = k_p E_{IV} + k_i \int_0^t E_{IV}(t) dt + k_d \frac{dE_{IV}}{dt}$ $\dot{m}_{out} = k_p E_{IV} + k_i \int_0^t E_{IV}(t) dt + k_d \frac{dE_{IV}}{dt}$ Safety limit - Compressor surge margin $SM = \frac{\dot{m}_{comp} - \dot{m}_{surge}}{\dot{m}_{surge}}$

800 1000 1200 1400 1600

Time [sec]

Inventory profile

- feedback ρ_{avg} Cooling flow Load demand $W_{net} = W_T - W_C$ Waenerator V₁ V_4 Inventorv **Turbine bypass Cycle efficiency** V_{2} $\eta = \frac{W_{net}}{Q_{core}} = \frac{W_T - W_C}{O_{core}}$ Minimize **Dependent** $\[\ V_1 :$ Control discharging flow $\rightarrow \rho_{ava} \downarrow \rightarrow Q_{core} \downarrow$ $V_{2}: \text{ Control charging flow } \rightarrow \rho_{avg} \uparrow \rightarrow Q_{core} \uparrow$ $V_{3}: \text{ Control turbine bypass flow } \rightarrow W_{T} \downarrow \text{ (regulate } \omega\text{)}$ $V_{4}: \text{ Control cooling flow } \rightarrow \text{ regulate } CIT$
- ♦ Optimum combination of $[V_1, V_2, V_3, V_4]$ with system stability → Minimize Q_{core}
- ✤ Many solutions satisfying a given scenario

Introduction

Research scope

Deep reinforcement learning (DRL) based control

- > RL: Sequential decision making setup which consists of an agent interacting with an environment in discrete steps.
- > RL problems are described as Markov Decision Processes (MDP)
 - State $s \in S$
 - Action $a \in A$
 - Reward $R_s^a = \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a]$
 - Policy $\pi(a|s) = \mathbb{P}[A_t = a \mid S_t = s]$
 - Discounting factor γ

It aims to increase the number of independent state and control variables as compared to the classic control environments

Introduction

Research scope

Data production

System modeling

- System analysis code: modified MARS code (MARS-CO₂)
- ➢ Based on MARS-KS 1.4 ver.
 - 1. NIST database for accurate calculation near the critical point
 - 2. PCHE heat transfer model for calculation (recuperator)
 - 3. Pham(CEA) turbomachinery similitude model
- > Steady-state modeling including main components and control system

	P [MPa]	T[K]	ṁ [kg/s]
1	22.35	823.15	115.35
2	8.35	710.74	115.35
3	8.10	376.73	115.35
4	8.00	308.15	115.35
5	22.70	361.88	115.35
6	22.60	613.63	115.35

Data production

Load following simulation

- > Various PI gain values of control valves
- > 9,900 simulation data with 5,949,900 data points

Time-series surrogate model

t-4

t-3

t-2 t-1

t

Time-series surrogate model

Surrogate model test results

> Test results show very good agreement with MARS simulation data

03 Reinforcement Learning

Reinforcement-learning

Pre-training using surrogate model

RL environment and training conditions

- Scenario: 100% 70% 100% operation (10%/min)
- > Action space: Box(-1, 1, (3,)) control valves
 - 1. TBP (-1: V₁ fully closed, 1: V₁ fully opened)
 - 2. Inventory (0: $V_2 \& V_3$ closed,
 - -1: V_2 fully opened, 1: V_3 fully opened)
 - 3. CIT (-1: V₄ fully closed, 1: V₄ fully opened)

RPM deviation

-50, done = true

- > Observation: Box(0, 1, (24,)) system parameters
- > Rewards
 - 1. RPM
 - 2. Efficiency
 - 3. CIT
 - 4. Alive: +1
 - 5. Abnormal termination (penalty)
- Algorithm: Proximal policy optimization (PPO)
- Max episode length: 600
- > Max training length: 3e7

Reinforcement-learning

Pre-training using surrogate model

- Pre-trained agent shows reasonably good control performance under the trained scenario.
 - > It also performs control in the correct direction in MARS environment, but needs to be improved further with post-learning.

04 Further Works

Further Works

Transfer learning using system analysis code

- Fine tuning (lower training time steps)
- ➢ Optimizer: Adam → SGD
- ➤ Learning rate ↓
- Training time comparison
 - Surrogate model: 3e7 steps ~570 mins
 - MARS: 1e5 steps ~2280 mins
 - Surrogate model \rightarrow ~1200 times faster

Application to real world system

> Hardware validation of DRL-based control methodology

< ABC test loop >

< Inventory tank >

Thank you for your attention

Q & A

System analysis code: MARS code modification

- 1. Physical properties of CO₂
 - NIST database for accurate calculation near the critical point

- 2. PCHE heat transfer model
 - · For design and off-design calculation of recuperator

 $Nu = 0.0292 Re^{0.8137}$

- 3. Turbomachinery model
 - CEA similitude model & performance maps

System analysis code: loop modeling & code validation

< Transient scenario in MARS code simulation >

System analysis code: loop modeling & code validation

- > MARS code can well simulate the dynamic characteristics of the ABC test loop
- > It is possible to predict not only the **normal** state but also the **abnormal** state of the system.

(Cell) state

Hidden State

Long Short Term Memory (LSTM) model

tanh

X

Output Gate

Forget Gate

tanh

σ

Input

Next (Cell) State

Next Hidden State

- > Model to solve the long-term dependencies in traditional RNNs.
- To predict future data by considering not only the previous data, but also the past data more macroscopically
- 6 parameters & 4 gates

Long Short Term Memory (LSTM) model

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

Deep Reinforcement learning

- > RL: Sequential decision making setup which consists of an agent interacting with an environment in discrete steps.
- RL problems are described as Markov Decision Processes (MDP)

RL algorithm: Proximal Policy Optimization (PPO)

> Policy gradient (PG): $\nabla_{\theta} J(\theta) = \mathbb{E}_{\pi_{\theta}} [\nabla_{\theta} \log \pi_{\theta}(s, a) \cdot Q_{\pi_{\theta}}(s, a)]$

