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Background and motivation 

 10 MWe  class S-CO2 direct cycle in combination with a fast neutron nuclear reactor 

 Long life core (20 yrs) and enhanced safety feature 

 Full modularization (reactor core, power conversion system) 

 Transportable and installed to generate electricity in extreme environments (remote site) 

< Concept of KAIST-MMR > 
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Background and motivation 

 Reactor power control & power conversion system control 

 S-CO2 coolant: compressible fluid and large density variations with pressure changes 

 Passive load following operation using coolant inventory control 
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Background and motivation 

 Scenario (ramp rate & operation range) based automatic controller design 
under limited optimization 

 Control objective 
- Regulation: Maintain a steady state value 
- Tracking: Follow a prescribed trajectory 

 Control parameter 
- Compressor inlet temperature 

 𝐸𝐶𝐼𝑇 =
𝐶𝐼𝑇 𝑡 − 𝐶𝐼𝑇𝑑𝑒𝑠𝑖𝑔𝑛

𝐶𝐼𝑇𝑑𝑒𝑠𝑖𝑔𝑛
, 𝑑𝑚 𝑐 = 𝑘𝑝𝐸𝐶𝐼𝑇 + 𝑘𝑖  𝐸𝐶𝐼𝑇(𝑡 

𝑡

0
𝑑𝑡 + 𝑘𝑑

𝑑𝐸𝐶𝐼𝑇

𝑑𝑡
 

- Turbine rotational speed 

  
𝑑𝜔

𝑑𝑡
=

𝑊𝑡𝑢𝑟𝑏−𝑊𝑐𝑜𝑚𝑝 𝜀𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟−𝑊𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟

 𝐼𝑖𝑖 𝜔
   

 𝐸𝑇𝐵𝑃 =
𝜔(𝑡 −𝜔𝑑𝑒𝑠𝑖𝑔𝑛

𝜔𝑑𝑒𝑠𝑖𝑔𝑛
, 𝑓𝑇𝐵𝑃 = 𝑘𝑝𝐸𝑇𝐵𝑃 + 𝑘𝑖  𝐸𝑇𝐵𝑃(𝑡 

𝑡

0
𝑑𝑡 + 𝑘𝑑

𝑑𝐸𝑇𝐵𝑃

𝑑𝑡
 

 Optimization parameter 
- Inventory 

 𝐸𝐼𝑉 =
𝑀(𝑡 −𝑀𝑡𝑎𝑟𝑔𝑒𝑡

𝑀𝑡𝑎𝑟𝑔𝑒𝑡
, 

 𝑚 𝑖𝑛 = 𝑘𝑝𝐸𝐼𝑉 + 𝑘𝑖  𝐸𝐼𝑉(𝑡 
𝑡

0
𝑑𝑡 + 𝑘𝑑

𝑑𝐸𝐼𝑉

𝑑𝑡
,  

 𝑚 𝑜𝑢𝑡 = 𝑘𝑝𝐸𝐼𝑉 + 𝑘𝑖  𝐸𝐼𝑉(𝑡 
𝑡

0
𝑑𝑡 + 𝑘𝑑

𝑑𝐸𝐼𝑉

𝑑𝑡
  

 Safety limit 
- Compressor surge margin 

 𝑆𝑀 =
𝑚 𝑐𝑜𝑚𝑝−𝑚 𝑠𝑢𝑟𝑔𝑒

𝑚 𝑠𝑢𝑟𝑔𝑒
  

Turbine bypass 
Inventory 

Cooling 
flow 

𝑽𝟒 

𝑽𝟑 

𝑽𝟐 

𝑽𝟏 

Load demand 

𝝆𝒂𝒗𝒈 

𝑸𝒄𝒐𝒓𝒆 

𝑾𝒏𝒆𝒕 = 𝑾𝑻 − 𝑾𝑪 

Cycle efficiency 

𝜼 =
𝑾𝒏𝒆𝒕

𝑸𝒄𝒐𝒓𝒆
=

𝑾𝑻 − 𝑾𝑪

𝑸𝒄𝒐𝒓𝒆
 

feedback 

𝑽𝟏: Control discharging flow  𝝆𝒂𝒗𝒈  ↓  𝑸𝒄𝒐𝒓𝒆 ↓ 

𝑽𝟐: Control charging flow  𝝆𝒂𝒗𝒈  ↑  𝑸𝒄𝒐𝒓𝒆  ↑ 

𝑽𝟑: Control turbine bypass flow  𝑾𝑻  ↓ (regulate 𝝎) 
𝑽𝟒: Control cooling flow  regulate 𝑪𝑰𝑻 

Minimize 

 Optimum combination of 𝑽𝟏, 𝑽𝟐, 𝑽𝟑, 𝑽𝟒  with system stability 
 Minimize 𝑸𝒄𝒐𝒓𝒆 

 Many solutions satisfying a given scenario 

Dependent 

Stability, 
Performance 
optimization 𝑾𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒐𝒓 
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Research scope 

 It aims to increase the number of independent state and control variables as compared to 

the classic control environments 

Environment: KAIST-MMR 

Agent 

State: simulation data 

Reward 
   - Control performance 
   - Off-design efficiency 

Action: control valve positions 

 RL: Sequential decision making setup which consists of an agent interacting with an environment in discrete steps. 

 RL problems are described as Markov Decision Processes (MDP) 

 - State  s ∈ 𝑺 

 - Action a ∈ 𝑨 

 - Reward 𝑅𝑠
𝑎 = 𝔼 𝑅𝑡+1｜𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎  

 - Policy 𝜋 𝑎 s = ℙ 𝐴𝑡 = 𝑎｜𝑆𝑡 = 𝑠  

 - Discounting factor 𝛾 

[𝑷𝟏,…𝑷𝒏,𝑻𝟏,…𝑻𝒏,𝒎 𝟏,…𝒎 𝒏,…𝑾,𝑴,𝑸,… ]𝒕 + 𝟏 

𝑽𝟏, … 𝑽𝒏 𝒕 
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Research scope 

Time series 
surrogate model 

System analysis 
code data 

KAIST-MMR 
model 

Learning agent 

Supervised 
learning 

Reinforcement 
learning 

Action 

Reward 

Policy 

state 

Transfer learning 
(Fine tuning) KAIST-MMR 

model 
Pre-trained agent 

Action 

Reward 

Policy 

state 

Pre-training 
Env. 

Env. 

Reinforcement 
learning 

1. Training time 

2. code stability 
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Data production 

 System analysis code: modified MARS code (MARS-CO2) 

 Based on MARS-KS 1.4 ver. 

1. NIST database for accurate calculation near the critical point 

2. PCHE heat transfer model for calculation (recuperator) 

3. Pham(CEA) turbomachinery similitude model 

 

 Steady-state modeling including main components and control system 

𝑃 [𝑀𝑃𝑎] 𝑇 [𝐾] 𝑚  [𝑘𝑔 𝑠 ] 

1 22.35 823.15 115.35 

2 8.35 710.74 115.35 

3 8.10 376.73 115.35 

4 8.00 308.15 115.35 

5 22.70 361.88 115.35 

6 22.60 613.63 115.35 
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Data production 

 Various PI gain values of control valves 

 9,900 simulation data with 5,949,900 data points 
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Time-series surrogate model 

● ● ● ● ● ● ● ● ● ● 

● ● ● ● ● ● ● ● ● ● 

● ● ● ● ● ● ● ● ● ● 

● ● ● ● ● ● ● ● ● ● 

● ● ● ● ● ● ● ● ● ● 

● Input data point ● Labelled (or test) data point 

One-step ahead rolling forecast 

Number of 
nodes 

MAE 

Conv1D-
LSTM 

Attention 
based LSTM 

32 3.0e-3 6.37e-4 

64 1.9e-3 5.17e-4 

128 1.8e-3 4.58e-4 

256 1.7e-3 4.41e-4 

512 1.6e-3 4.36e-4 

1024 1.5e-3 4.17e-4 

Training (80%) Validation (10%) Test (10%) 

𝐌𝐀𝐄 =  
𝟏

𝑵
 𝒚𝒑𝒓𝒆𝒅,𝒊 − 𝒚𝑴𝑨𝑹𝑺,𝒊

𝑵

𝒊=𝟏

 

 LSTM based multivariate time-series forecasting model 

• Conv1D-LSTM 

• Attention based LSTM 
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Time-series surrogate model 

 Test results show very good agreement with MARS simulation data 

< Comparison of MARS code data and predicted values from the surrogate model  > 



03 
Reinforcement 

Learning 
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Pre-training using surrogate model 

 Scenario: 100% - 70% - 100% operation (10%/min) 

 Action space: Box(-1, 1, (3,)) control valves 

1. TBP (-1: V1 fully closed, 1: V1 fully opened) 

2. Inventory (0: V2 & V3 closed, 

-1: V2 fully opened, 1: V3 fully opened) 

3. CIT (-1: V4 fully closed, 1: V4 fully opened) 

 Observation: Box(0, 1, (24,)) system parameters 

 Rewards 

1. RPM 

2. Efficiency 

3. CIT 

4. Alive: +1 

5. Abnormal termination (penalty) 

 Algorithm: Proximal policy optimization (PPO) 

 Max episode length: 600 

 Max training length: 3e7 

𝑉1 

𝑉2 

𝑉3 
𝑉4 
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Pre-training using surrogate model 

< Training & test scenario > 

< Pre-training result > 

< Control test results in surrogate environment (CIT & RPM) > 

< Control test results in MARS environment (CIT & RPM) > 

 Pre-trained agent shows reasonably good control performance under the trained scenario. 

 It also performs control in the correct direction in MARS environment, but needs to be improved further with post-learning. 



04 
Further Works 
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 Fine tuning (lower training time steps) 

 Optimizer: Adam  SGD 

 Learning rate ↓ 

 Training time comparison 

- Surrogate model: 3e7 steps ~570 mins 

- MARS: 1e5 steps ~2280 mins 

Surrogate model  ~1200 times faster 

MARS Pre-trained agent 

Action 

Reward 

Policy 

state 

Reinforcement 
learning 

< Layout of KAIST-MMR > < Layout of ABC test loop > 

35 ℃ 
7.6 MPa 

550 ℃ 
20 MPa 

30 MW 50 kW 
35 ℃ 
8 MPa 

60 ℃ 
9 MPa 

< ABC test loop > < Inventory tank > 

 Hardware validation of DRL-based control methodology 



T h a n k  y o u  f o r  y o u r  a t t e n t i o n  

Q  &  A  



Appendix 



Accurate 
CO2 

properties 

Turbomachinery model 

PCHE model 

𝑁𝑢 = 0.0292𝑅𝑒0.8137 



< Schematic of ABC loop modeling in MARS code > < Previous CIT control test data > 

< Transient scenario in MARS code simulation > 



Reverse flow 

Reverse flow 



 MARS code can well simulate the dynamic characteristics of the ABC test loop 

 It is possible to predict not only the normal state but also the abnormal state of the system. 



< Recurrent neural network (RNN) > < LSTM > 

 Model to solve the long-term dependencies in traditional RNNs. 

 To predict future data by considering not only the previous 

data, but also the past data more macroscopically 

 6 parameters & 4 gates 



Cell state Forget gate Input gate 

Update Output gate 



 RL: Sequential decision making setup which consists of an agent interacting with an environment in discrete steps. 

 RL problems are described as Markov Decision Processes (MDP) 

 - State  s ∈ 𝑺 

 - Action a ∈ 𝑨 

 - Reward 𝑅𝑠
𝑎 = 𝔼 𝑅𝑡+1｜𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎  

 - Policy 𝜋 𝑎 s = ℙ 𝐴𝑡 = 𝑎｜𝑆𝑡 = 𝑠  

 - Discounting factor 𝛾 

 Objective: maximize the expected return by choosing an optimal policy 

 - Return 𝐺𝑡 =  𝛾𝑘𝑅𝑡+𝑘+1
∞
0  

 - State-value function 𝑉𝜋 𝑠 = 𝔼𝜋 𝐺𝑡｜𝑆𝑡 = 𝑠  ,𝑉𝜋
∗ 𝑠 = max

𝜋
𝑉𝜋 𝑠  

 - Action-value function 𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋 𝐺𝑡｜𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 , 𝑄𝜋
∗ 𝑠, 𝑎 = max

𝜋
𝑄𝜋 𝑠, 𝑎  

[𝑷𝟏,…𝑷𝒏,𝑻𝟏,…𝑻𝒏,𝒎 𝟏,…𝒎 𝒏,…𝑾,𝑴,𝑸,… ]𝒕 + 𝟏 

𝑽𝟏, … 𝑽𝒏 𝒕 

 Value based RL (DQN) 

- Minimize loss function 𝐿 𝜃  

- 𝜃𝑘+1 ← 𝜃𝑘 − 𝛼 ∙ ∇𝜃𝐿(𝜃  (gradient descent) 

- 𝜋∗ 𝑎 s =  
1       𝑖𝑓 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 𝑄𝜋

∗ 𝑠, 𝑎
0                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 Policy based RL 

- Maximize objective function 𝐽 𝜃 = 𝑉𝜋𝜃
(𝑆0  

- 𝜃𝑘+1 ← 𝜃𝑘 + 𝛼 ∙ ∇𝜃𝐽(𝜃  (gradient ascent) 

- Action choice: softmax 

 



PG/REINFORCE Actor Critic (A2C) 
Trust Region Policy 

Optimization (TRPO), 2015 
Proximal Policy 

Optimization (PPO), 2017 

 Policy gradient (PG): ∇𝜃𝐽 𝜃 = 𝔼𝜋𝜃
∇𝜃 log 𝜋𝜃(𝑠, 𝑎 ∙ 𝑄𝜋𝜃

(𝑠, 𝑎   

𝔼𝜋𝜃
∇𝜃 log 𝜋𝜃(𝑠, 𝑎 ∙ 𝐺𝑡  𝔼𝜋𝜃

∇𝜃 log 𝜋𝜃(𝑠, 𝑎 ∙ 𝐴𝑊(𝑠, 𝑎  

Advantage function 
𝐴𝜋𝜃

= 𝑄𝜋𝜃
𝑠, 𝑎 − 𝑉𝜋𝜃

(𝑠  

𝐽 𝜃 − 𝐽 𝜃𝑜𝑙𝑑 = 𝐿 𝜃 > 0 

Kullback-Leibler (KL) 
divergence 

𝑟 𝜃 =
𝜋𝜃 𝑎 𝑠

𝜋𝜃𝑜𝑙𝑑
𝑎 𝑠

 

𝐷𝐾𝐿 𝜋𝜃𝑜𝑙𝑑
∙ 𝑠 ∥ 𝜋𝜃 ∙ 𝑠 ≤ 𝛿 

Clip parameter 

1 − 𝜖 ≤ 𝑟(𝜃 ≤ 1 + 𝜖 


