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Background and motivation 

 10 MWe  class S-CO2 direct cycle in combination with a fast neutron nuclear reactor 

 Long life core (20 yrs) and enhanced safety feature 

 Full modularization (reactor core, power conversion system) 

 Transportable and installed to generate electricity in extreme environments (remote site) 

< Concept of KAIST-MMR > 
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Background and motivation 

 Reactor power control & power conversion system control 

 S-CO2 coolant: compressible fluid and large density variations with pressure changes 

 Passive load following operation using coolant inventory control 
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Background and motivation 

 Scenario (ramp rate & operation range) based automatic controller design 
under limited optimization 

 Control objective 
- Regulation: Maintain a steady state value 
- Tracking: Follow a prescribed trajectory 

 Control parameter 
- Compressor inlet temperature 

 𝐸𝐶𝐼𝑇 =
𝐶𝐼𝑇 𝑡 − 𝐶𝐼𝑇𝑑𝑒𝑠𝑖𝑔𝑛

𝐶𝐼𝑇𝑑𝑒𝑠𝑖𝑔𝑛
, 𝑑𝑚 𝑐 = 𝑘𝑝𝐸𝐶𝐼𝑇 + 𝑘𝑖  𝐸𝐶𝐼𝑇(𝑡 

𝑡

0
𝑑𝑡 + 𝑘𝑑

𝑑𝐸𝐶𝐼𝑇

𝑑𝑡
 

- Turbine rotational speed 

  
𝑑𝜔

𝑑𝑡
=

𝑊𝑡𝑢𝑟𝑏−𝑊𝑐𝑜𝑚𝑝 𝜀𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟−𝑊𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟

 𝐼𝑖𝑖 𝜔
   

 𝐸𝑇𝐵𝑃 =
𝜔(𝑡 −𝜔𝑑𝑒𝑠𝑖𝑔𝑛

𝜔𝑑𝑒𝑠𝑖𝑔𝑛
, 𝑓𝑇𝐵𝑃 = 𝑘𝑝𝐸𝑇𝐵𝑃 + 𝑘𝑖  𝐸𝑇𝐵𝑃(𝑡 

𝑡

0
𝑑𝑡 + 𝑘𝑑

𝑑𝐸𝑇𝐵𝑃

𝑑𝑡
 

 Optimization parameter 
- Inventory 

 𝐸𝐼𝑉 =
𝑀(𝑡 −𝑀𝑡𝑎𝑟𝑔𝑒𝑡

𝑀𝑡𝑎𝑟𝑔𝑒𝑡
, 

 𝑚 𝑖𝑛 = 𝑘𝑝𝐸𝐼𝑉 + 𝑘𝑖  𝐸𝐼𝑉(𝑡 
𝑡

0
𝑑𝑡 + 𝑘𝑑

𝑑𝐸𝐼𝑉

𝑑𝑡
,  

 𝑚 𝑜𝑢𝑡 = 𝑘𝑝𝐸𝐼𝑉 + 𝑘𝑖  𝐸𝐼𝑉(𝑡 
𝑡

0
𝑑𝑡 + 𝑘𝑑

𝑑𝐸𝐼𝑉

𝑑𝑡
  

 Safety limit 
- Compressor surge margin 

 𝑆𝑀 =
𝑚 𝑐𝑜𝑚𝑝−𝑚 𝑠𝑢𝑟𝑔𝑒

𝑚 𝑠𝑢𝑟𝑔𝑒
  

Turbine bypass 
Inventory 

Cooling 
flow 

𝑽𝟒 

𝑽𝟑 

𝑽𝟐 

𝑽𝟏 

Load demand 

𝝆𝒂𝒗𝒈 

𝑸𝒄𝒐𝒓𝒆 

𝑾𝒏𝒆𝒕 = 𝑾𝑻 − 𝑾𝑪 

Cycle efficiency 

𝜼 =
𝑾𝒏𝒆𝒕

𝑸𝒄𝒐𝒓𝒆
=

𝑾𝑻 − 𝑾𝑪

𝑸𝒄𝒐𝒓𝒆
 

feedback 

𝑽𝟏: Control discharging flow  𝝆𝒂𝒗𝒈  ↓  𝑸𝒄𝒐𝒓𝒆 ↓ 

𝑽𝟐: Control charging flow  𝝆𝒂𝒗𝒈  ↑  𝑸𝒄𝒐𝒓𝒆  ↑ 

𝑽𝟑: Control turbine bypass flow  𝑾𝑻  ↓ (regulate 𝝎) 
𝑽𝟒: Control cooling flow  regulate 𝑪𝑰𝑻 

Minimize 

 Optimum combination of 𝑽𝟏, 𝑽𝟐, 𝑽𝟑, 𝑽𝟒  with system stability 
 Minimize 𝑸𝒄𝒐𝒓𝒆 

 Many solutions satisfying a given scenario 

Dependent 

Stability, 
Performance 
optimization 𝑾𝒈𝒆𝒏𝒆𝒓𝒂𝒕𝒐𝒓 
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Research scope 

 It aims to increase the number of independent state and control variables as compared to 

the classic control environments 

Environment: KAIST-MMR 

Agent 

State: simulation data 

Reward 
   - Control performance 
   - Off-design efficiency 

Action: control valve positions 

 RL: Sequential decision making setup which consists of an agent interacting with an environment in discrete steps. 

 RL problems are described as Markov Decision Processes (MDP) 

 - State  s ∈ 𝑺 

 - Action a ∈ 𝑨 

 - Reward 𝑅𝑠
𝑎 = 𝔼 𝑅𝑡+1｜𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎  

 - Policy 𝜋 𝑎 s = ℙ 𝐴𝑡 = 𝑎｜𝑆𝑡 = 𝑠  

 - Discounting factor 𝛾 

[𝑷𝟏,…𝑷𝒏,𝑻𝟏,…𝑻𝒏,𝒎 𝟏,…𝒎 𝒏,…𝑾,𝑴,𝑸,… ]𝒕 + 𝟏 

𝑽𝟏, … 𝑽𝒏 𝒕 
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Research scope 

Time series 
surrogate model 

System analysis 
code data 

KAIST-MMR 
model 

Learning agent 

Supervised 
learning 

Reinforcement 
learning 

Action 

Reward 

Policy 

state 

Transfer learning 
(Fine tuning) KAIST-MMR 

model 
Pre-trained agent 

Action 

Reward 

Policy 

state 

Pre-training 
Env. 

Env. 

Reinforcement 
learning 

1. Training time 

2. code stability 
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Supervised 
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Data production 

 System analysis code: modified MARS code (MARS-CO2) 

 Based on MARS-KS 1.4 ver. 

1. NIST database for accurate calculation near the critical point 

2. PCHE heat transfer model for calculation (recuperator) 

3. Pham(CEA) turbomachinery similitude model 

 

 Steady-state modeling including main components and control system 

𝑃 [𝑀𝑃𝑎] 𝑇 [𝐾] 𝑚  [𝑘𝑔 𝑠 ] 

1 22.35 823.15 115.35 

2 8.35 710.74 115.35 

3 8.10 376.73 115.35 

4 8.00 308.15 115.35 

5 22.70 361.88 115.35 

6 22.60 613.63 115.35 
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Data production 

 Various PI gain values of control valves 

 9,900 simulation data with 5,949,900 data points 
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Time-series surrogate model 

● ● ● ● ● ● ● ● ● ● 

● ● ● ● ● ● ● ● ● ● 

● ● ● ● ● ● ● ● ● ● 

● ● ● ● ● ● ● ● ● ● 

● ● ● ● ● ● ● ● ● ● 

● Input data point ● Labelled (or test) data point 

One-step ahead rolling forecast 

Number of 
nodes 

MAE 

Conv1D-
LSTM 

Attention 
based LSTM 

32 3.0e-3 6.37e-4 

64 1.9e-3 5.17e-4 

128 1.8e-3 4.58e-4 

256 1.7e-3 4.41e-4 

512 1.6e-3 4.36e-4 

1024 1.5e-3 4.17e-4 

Training (80%) Validation (10%) Test (10%) 

𝐌𝐀𝐄 =  
𝟏

𝑵
 𝒚𝒑𝒓𝒆𝒅,𝒊 − 𝒚𝑴𝑨𝑹𝑺,𝒊

𝑵

𝒊=𝟏

 

 LSTM based multivariate time-series forecasting model 

• Conv1D-LSTM 

• Attention based LSTM 
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Time-series surrogate model 

 Test results show very good agreement with MARS simulation data 

< Comparison of MARS code data and predicted values from the surrogate model  > 
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Reinforcement 

Learning 
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Pre-training using surrogate model 

 Scenario: 100% - 70% - 100% operation (10%/min) 

 Action space: Box(-1, 1, (3,)) control valves 

1. TBP (-1: V1 fully closed, 1: V1 fully opened) 

2. Inventory (0: V2 & V3 closed, 

-1: V2 fully opened, 1: V3 fully opened) 

3. CIT (-1: V4 fully closed, 1: V4 fully opened) 

 Observation: Box(0, 1, (24,)) system parameters 

 Rewards 

1. RPM 

2. Efficiency 

3. CIT 

4. Alive: +1 

5. Abnormal termination (penalty) 

 Algorithm: Proximal policy optimization (PPO) 

 Max episode length: 600 

 Max training length: 3e7 

𝑉1 

𝑉2 

𝑉3 
𝑉4 
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Pre-training using surrogate model 

< Training & test scenario > 

< Pre-training result > 

< Control test results in surrogate environment (CIT & RPM) > 

< Control test results in MARS environment (CIT & RPM) > 

 Pre-trained agent shows reasonably good control performance under the trained scenario. 

 It also performs control in the correct direction in MARS environment, but needs to be improved further with post-learning. 
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 Fine tuning (lower training time steps) 

 Optimizer: Adam  SGD 

 Learning rate ↓ 

 Training time comparison 

- Surrogate model: 3e7 steps ~570 mins 

- MARS: 1e5 steps ~2280 mins 

Surrogate model  ~1200 times faster 

MARS Pre-trained agent 

Action 

Reward 

Policy 

state 

Reinforcement 
learning 

< Layout of KAIST-MMR > < Layout of ABC test loop > 

35 ℃ 
7.6 MPa 

550 ℃ 
20 MPa 

30 MW 50 kW 
35 ℃ 
8 MPa 

60 ℃ 
9 MPa 

< ABC test loop > < Inventory tank > 

 Hardware validation of DRL-based control methodology 



T h a n k  y o u  f o r  y o u r  a t t e n t i o n  

Q  &  A  



Appendix 



Accurate 
CO2 

properties 

Turbomachinery model 

PCHE model 

𝑁𝑢 = 0.0292𝑅𝑒0.8137 



< Schematic of ABC loop modeling in MARS code > < Previous CIT control test data > 

< Transient scenario in MARS code simulation > 



Reverse flow 

Reverse flow 



 MARS code can well simulate the dynamic characteristics of the ABC test loop 

 It is possible to predict not only the normal state but also the abnormal state of the system. 



< Recurrent neural network (RNN) > < LSTM > 

 Model to solve the long-term dependencies in traditional RNNs. 

 To predict future data by considering not only the previous 

data, but also the past data more macroscopically 

 6 parameters & 4 gates 



Cell state Forget gate Input gate 

Update Output gate 



 RL: Sequential decision making setup which consists of an agent interacting with an environment in discrete steps. 

 RL problems are described as Markov Decision Processes (MDP) 

 - State  s ∈ 𝑺 

 - Action a ∈ 𝑨 

 - Reward 𝑅𝑠
𝑎 = 𝔼 𝑅𝑡+1｜𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎  

 - Policy 𝜋 𝑎 s = ℙ 𝐴𝑡 = 𝑎｜𝑆𝑡 = 𝑠  

 - Discounting factor 𝛾 

 Objective: maximize the expected return by choosing an optimal policy 

 - Return 𝐺𝑡 =  𝛾𝑘𝑅𝑡+𝑘+1
∞
0  

 - State-value function 𝑉𝜋 𝑠 = 𝔼𝜋 𝐺𝑡｜𝑆𝑡 = 𝑠  ,𝑉𝜋
∗ 𝑠 = max

𝜋
𝑉𝜋 𝑠  

 - Action-value function 𝑄𝜋 𝑠, 𝑎 = 𝔼𝜋 𝐺𝑡｜𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 , 𝑄𝜋
∗ 𝑠, 𝑎 = max

𝜋
𝑄𝜋 𝑠, 𝑎  

[𝑷𝟏,…𝑷𝒏,𝑻𝟏,…𝑻𝒏,𝒎 𝟏,…𝒎 𝒏,…𝑾,𝑴,𝑸,… ]𝒕 + 𝟏 

𝑽𝟏, … 𝑽𝒏 𝒕 

 Value based RL (DQN) 

- Minimize loss function 𝐿 𝜃  

- 𝜃𝑘+1 ← 𝜃𝑘 − 𝛼 ∙ ∇𝜃𝐿(𝜃  (gradient descent) 

- 𝜋∗ 𝑎 s =  
1       𝑖𝑓 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 𝑄𝜋

∗ 𝑠, 𝑎
0                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 Policy based RL 

- Maximize objective function 𝐽 𝜃 = 𝑉𝜋𝜃
(𝑆0  

- 𝜃𝑘+1 ← 𝜃𝑘 + 𝛼 ∙ ∇𝜃𝐽(𝜃  (gradient ascent) 

- Action choice: softmax 

 



PG/REINFORCE Actor Critic (A2C) 
Trust Region Policy 

Optimization (TRPO), 2015 
Proximal Policy 

Optimization (PPO), 2017 

 Policy gradient (PG): ∇𝜃𝐽 𝜃 = 𝔼𝜋𝜃
∇𝜃 log 𝜋𝜃(𝑠, 𝑎 ∙ 𝑄𝜋𝜃

(𝑠, 𝑎   

𝔼𝜋𝜃
∇𝜃 log 𝜋𝜃(𝑠, 𝑎 ∙ 𝐺𝑡  𝔼𝜋𝜃

∇𝜃 log 𝜋𝜃(𝑠, 𝑎 ∙ 𝐴𝑊(𝑠, 𝑎  

Advantage function 
𝐴𝜋𝜃

= 𝑄𝜋𝜃
𝑠, 𝑎 − 𝑉𝜋𝜃

(𝑠  

𝐽 𝜃 − 𝐽 𝜃𝑜𝑙𝑑 = 𝐿 𝜃 > 0 

Kullback-Leibler (KL) 
divergence 

𝑟 𝜃 =
𝜋𝜃 𝑎 𝑠

𝜋𝜃𝑜𝑙𝑑
𝑎 𝑠

 

𝐷𝐾𝐿 𝜋𝜃𝑜𝑙𝑑
∙ 𝑠 ∥ 𝜋𝜃 ∙ 𝑠 ≤ 𝛿 

Clip parameter 

1 − 𝜖 ≤ 𝑟(𝜃 ≤ 1 + 𝜖 


