Numerical Investigation on Mixed Convection Heat Transfer in a Packed Bed

2024.05.09

Seong-Il Baek and Bum-Jin Chung *

Kyung Hee University, Korea

Introduction (1/2)

Challenges of renewable energy penetration

- Intermittent nature of energy source
- Electric grid stability problem

• Nuclear-Renewable Hybrid Energy Systems (N-R HES)

- Conceptual system integrating nuclear, renewables through energy storage
- Conventional baseload operation \rightarrow Flexible operation to compensate intermittency of renewables

• Thermal Energy Storage (TES)

- Store energy in the form of heat
- Widely used in concentrating solar power (CSP) plant
- Being considered for use in NPPs

[Conceptual NPP with TES system]

Introduction (2/2)

- Randomly packed solid filler in cylindrical tank
- Charging : top-to-bottom flow
- Discharging: bottom-to-top flow

Mixed convection heat transfer in packed bed TES

- Injection of low-speed heat transfer fluid
- Changes in flow direction
- Packed bed : Non-uniform temperature distribution and complex flow patterns
 Mixed convection + Structural characteristics
- In this study, the phenomena of mixed convection heat transfer in packed bed was analyzed

[Packed bed TES system (Xie et al., 2022]

Laminar mixed convection in pipe

• Buoyancy aided flow

- − Heat transfer ↑
- Increase in flow velocity due to the forced convection in the same direction as buoyancy

Buoyancy opposed flow

- Heat transfer \downarrow
- **Decrease in flow velocity** due to the forced convection in the **opposite direction** to buoyancy

[Laminar mixed convection in vertical tube (Aung et al., 1987)]

Turbulent mixed convection in pipe

Buoyancy aided flow

- Heat transfer decreases due to the increase in buoyancy coefficient, but then increases as the flow velocity increases further
- Reduction of shear stress due to the flow in the same direction as buoyancy
- Turbulent production \downarrow
- Buoyancy opposed flow
 - Heat transfer increases due to the increase in buoyancy coefficient.
 - Increasing shear stress in the opposite direction to buoyancy
 - Turbulent production \uparrow

[Turbulent mixed convection in a vertical tube (Inagaki *et al.*, 1996)]

Motivation and Objective

Phenomena difference

	Ріре	Packed bed		
Heat transfer	Flow (shear)	Flow (shear)	Structural characteristics	
	Turbulent production	Turbulent production	Vortex production	
Phenomenon	Occurrence of turbulent motion through the interaction of buoyancy and flow		Occurrence of vortex motion through the collision between internal structure and flow	

• Objective of this study

- Numerical analysis on mixed convection heat transfer by varying parameters of packed bed
 - Tank height (H)
- Analysis of local heat transfer for mixed convection behavior in packed bed

Existing study on mixed convection in packed bed

• Existing study

Numerical analysis

• Numerical study was conducted to clearly observe the turbulent mixed convection behavior in packed bed

[Numerical analysis process]

CFD setup (packed bed modeling)

• Location coordinate of packed bed

[Creating coordinates of packed bed in Python]

[Dependency test for random numbers]

- The location coordinates of packed bed were generated using random number generation in **Python code**
- Contact point model = Overlaps
 (less than 3 % of the sphere area)
- As a result of dependency test of porosity according to random numbers, the porosity was constant at **0.41** after about 3,000 random numbers. (Porosity of packed bed = 0.39-0.43)

[Overlaps model (Bu et al., 2004]

CFD setup (packed bed modeling)

Packed bed modeling

- Packed bed was simulated in ANSYS using location coordinates

H/d	Bed height (H)	Sphere diameter (d)
5	0.05 m	
10	0.10 m	0.01
15	0.15 m	0.01 m
20	0.20 m	

[*H* and *d* according to H/d]

H/d	Number of spheres	Porosity
5	160	0.407
10	315	0.417
15	468	0.423
20	622	0.424

Porosity of packed bed = 0.41-0.43

[Porosity of packed bed according to H/d]

[Packed bed modeling in ANSYS]

CFD setup

Meshing ٠

[Mesh of packed bed in ANSYS meshing]

Turbulence model ٠

[Dependency test for number of elements]

Element size [mm]	Elements	Error rate [%]
1.0	1,378,047	-11.97
0.80	2,322,002	-8.69
0.75	2,696,680	-3.04
0.70	3,155,392	2.23
0.60	4,486,275	2.02
0.55	5,451,036	2.83
0.50	6,649,692	2.74

[Number of elements according to element size]

Turbulence model test

- RANS models except SST k-omega showed a large difference from experimental results in small Re_{dh}
- Therefore, SST k-omega model was adopted as turbulence model in this work (Maximum relative error \rightarrow 4.9 %)

KNS Spring Meeting May 8-10, 2024

CFD setup

- Simulation was performed by adopting the CFD code based on ANSYS Fluent
- Assumptions
 - I. Uniform flow of constant velocity is injected into the tank
 - II. Walls of bed are insulated (adiabatic condition)
 - III. The properties of heat transfer fluid and solid spheres are independent of temperature

Test matrix

- The range of test matrix for existing experimental studies has been extended
 - H/d = 15, 20
 - $Re_{dh} = 5-300$

	D [m]		Da	II/J	Re _{dh}	Temperature [K]		Flow dimention
	<i>D</i> [III]		ка _d	n/a		Fluid	Spheres	Flow direction
2,014	0.06	0.01	8.48×10 ⁻⁷	5, 10, 15, 20	5- 300	300	378.85	Buoyancy aided, Opposed flow

[Test matrix]

[Properties of CuSO₄-H₂SO₄]

Density [kg/m³]	Viscosity [kg/(m`s)]	Specific heat [J/(kg [.] K)]	Thermal conductivity [W/(m·K)]	Thermal Diffusivity [m²/s]	Thermal expansion [1/K]
1097	1.25×10 ⁻³	999.66	6.23×10 ⁻⁴	5.68×10 ⁻¹⁰	5.61×10 ⁻⁵

Validation

• Flow velocity

• Heat transfer

• Flow velocity

[Aided flow (H/d=5)]

[Contour of velocity (Aided)]

Flow velocity Non-uniform behavior \rightarrow Random packing Wall region \rightarrow Peak of velocity value Increased with Re_{dh} - Aided flow > Opposed flow - Acceleration by buoyancy

KNS Spring Meeting May 8-10, 2024

Heat transfer

• Turbulent intensity

KNS Spring Meeting May 8-10, 2024

• Turbulent intensity

[Velocity vector]

[Contour of turbulent intensity]

[Contour of turbulent intensity according to Re_{dh}]

Turbulent intensity

Cause of increased turbulent intensity

- Turbulent production from flow
- Vortex production from packed bed

Mixed convection in packed bed

- Turbulence production < Vortex production

18

Conclusion

- Numerical analysis on mixed convection heat transfer phenomena in packed bed was performed
 Varying the bed height
- Packed beds were modeled using the location coordinates obtained through the in-house code
 The results of this study were consistent with those of existing experiments
- Mixed convection heat transfer in packed bed
 - Increased in flow velocity
 - Turbulent mixed convection behavior was observed due to the vortex production
 - Increased in bed height
 - Influence of vortex production increased
- Mixed convection heat transfer in packed bed
 - The behaviors of local mixed convection in packed were visualized to support the analysis results

Thank you for your attention

20

Appendix

Packed bed modeling

Methodology

• Analogy between heat transfer and mass transfer

[Governing equations]

Heat transfer	Mass transfer				
$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$					
$\rho \frac{Du}{Dt} = -\frac{\partial P}{\partial x} + \mu$	$\rho \frac{Du}{Dt} = -\frac{\partial P}{\partial x} + \mu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) + X$				
$\frac{DT}{Dt} = \alpha \nabla^2 T$	$\frac{DC}{Dt} = D_m \nabla^2 C$				

[Dimensionless numbers]

Heat t	ransfer	Mass transfer		
Nu	$rac{hd_h}{k}$	Sh	$rac{h_m d_h}{D_m}$	
Pr	$\frac{\nu}{\alpha}$	Sc	$\frac{\nu}{D_m}$	
Ra	$\frac{g\beta\Delta T d_h^{\ 3}}{\alpha v}$	Ra	$\frac{gd_h^{\ 3}}{D_m v}\frac{\Delta\rho}{\rho}$	

Copper electroplating system

- Total mass transfer rate (N_t)
 - = Diffusion (N_d) + Convection (N_c) + Electric migration (N_m)

Not exist in heat transfer, thus suppress it using H_2SO_4

• Mass transfer coefficient

$$h_{m} = \frac{(1-t_{n})I_{lim} / nF \longrightarrow \text{Mass flux}}{(C_{b} - C_{s}) \longrightarrow C_{s} \approx 0}$$

$$h=\frac{q''}{(T_{h}-T_{c})}$$

- Advantage of mass transfer
 - To achieve high Rayleigh number for small facility
 - No heat leakage
 - No radiation heat transfer

Experimental setup (Mass transfer)

• The experiments of mixed convection heat transfer on all heating spheres in packed bed

[Test matrix]

Sc	<i>D</i> [m]	<i>d</i> [m]	H/d	Re _{dh}	Flow direction
2,014	0.06	0.004	5, 10	1–70	Buoyancy aided, Opposed flow
		0.006		1-80	
		0.010		1-150	

- Each $D/d \rightarrow 6$, 10 and 15
- Each $H/d \rightarrow 5, 10$
- Volume flow rate = 0-2 L/min
- Porosity (ε) = 0.408–0.442
- The bed of glass spheres at upper and lower sections prevents the entrance and exit effects.

Department of Nuclear Engineering

Kyung Hee University

• All of the cases are under laminar condition.

Experimental setup (PIV)

• The experiments of PIV

[Test	matrix]
-------	---------

Sc	<i>D</i> [m]	<i>d</i> [m]	H/d	Re _{dh}
2,014	0.06	0.004	5, 10	10, 70
		0.010		10, 70, 170

- Filming the downstream
- Filming 1 cm away from the end of the bed
- Filming area is $3 \text{ cm} \times 3 \text{ cm}$

Results and discussion (PIV)

• Flow velocity (H/d = 5)

27

Results and discussion (PIV)

• Turbulent shear stress (H/d = 10)

KNS Spring Meeting May 8-10, 2024

Results and discussion (Heat transfer)

• Heat transfer

