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Warming Up: Characteristics of Monte Carlo codes
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History of Reactor Development
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Generation IV Reactors

The Generation IV International Forum (GIF) — an international
organization that coordinates the development of generation I'V reactors —
specifically selected six reactor technologies as candidates for generation
IV reactors.

The six designs selected were: the gas-cooled fast reactor (GFR), the
lead-cooled fast reactor (LFR), the molten salt reactor (MSR), the
sodium-cooled fast reactor (SFR), the supercritical-water-cooled
reactor (SCWR) and the very high-temperature reactor (VHTR).

The sodium-cooled fast reactor (SFR) has received the greatest share of
funding that supports demonstration facilities.

Key usefulness of SFR: Efficient Fuel Utilization; Waste Reduction;
Enhanced Safety Features; Higher Operating Temperatures; Proliferation
Resistance; Design Flexibility; Long Operational Lifespan



Sodium-cooled Fast Reactor System
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ESFR

* A new European Sodium-cooled Fast Reactor (ESFR) project, with a
slightly higher power of 3600 MWth, was launched in collaboration
between France, Italy, Germany, and the UK.

* Hexagonal compact core type

MCNP SERPENT

* The largest Generation IV power reactor ever designed.



MOCNP & SERPENT Codes

Development

Application
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Advanced
Techniques

Developed by LANL, USA

General-purpose, wide range
of applications

Neutrons, photons, electrons,
and many others(32?)

Well-developed

Built-in (CINDER90), detailed
capabilities

High resource demand

Steeper due to complex input
syntax

Suitable for a variety of
applications

Standard Monte Carlo
techniques

Developed by VTT, Finland

Optimized for reactor physics
applications

Primarily focused on neutrons

Less developed

Advanced (No NJOY & On-The-Fly),
efficient calculations(Group constants)

High efficiency for reactor simulations

User-friendly input tailored for reactor
modeling

Less versatile outside reactor physics

Utilizes advanced acceleration
techniques



Deep Neural Network
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Rolling Windows Training and
Forecasting Dataset
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Keff

Time Series Forecasting Results
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K eff

Deep Neural Network Regression
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Usefulness of DNN for Computing Keff

Understanding and controlling Keff is essential for the safe design and operation
of nuclear reactors, as it directly affects the reactor's stability and power output.

Monte Carlo methods are highly regarded for accurately simulating the
behavior of neutrons within a nuclear reactor core due to their probabilistic nature
(Stochastic Nature of Neutron Behavior) and ability to model complex
geometries (Detailed Geometry Modeling) and physical processes (Accurate
Microscopic Cross-Section Representation).

Monte Carlo simulations in nuclear physics rely heavily on the principles of
Markov processes (local). The results have inherent statistical noise, and achieving
low uncertainty requires many neutron histories, increasing computational time.

DNNs are powerful computational models that have shown exceptional
capability in pattern recognition, approximation, and regression tasks (global).

In the context of extracting true values from statistical fluctuations, they serve as
supplementary tools (narrowing the gap) that can effectively learn underlying
patterns and provide accurate estimates even when data is noisy or exhibits random
variations.



Issue for Scrutiny

* Discrepancy in Burnup Step Analysis: There was a
noticeable difference in results between the MCNP and
SERPENT codes, especially in the second and third burnup
steps.

* Discrepancy Between Monte Carlo Codes: The study found
a difference of up to 300 pcm (narrowing the gap) between
the effective multiplication factors calculated by the MCNP
and SERPENT codes. == Comparing to Pressurized Water
Reactor (PWR) study (Good agreement)
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Conclusions

Monte Carlo methods offer the highest accuracy for simulating reactor
burnup: by precisely modeling complex geometries and physical processes, as
well as accurately simulating neutron behavior.

Discrepancies in Baseline Calculations: For the PWR, excellent agreement in
the baseline Keff calculation. For the SFR, slight discrepancies of up to 300
pcm, need for further investigation and validation.

Integration of Monte Carlo Simulations and Neural Networks:
Supplementary tools (local [MC]+ global [DNN]) for less fluctuation and
narrower gaps . Regression is the best interpolation algorithm with step wise
data for control (rod) design.

Challenges and Limitations: The study's challenges, stemming from a small
dataset and discrepancies between different codes, underscore the need for
additional data collection, model refinement, and cross-validation to ensure
the reliability and practical applicability of methods in nuclear reactor burnup
studies.
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