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1. Introduction 

 

The Sodium-cooled Fast Reactor (SFR) is a leading 

Generation IV nuclear reactor [1] design, enhancing 

sustainability and safety. The use of liquid sodium as a 

coolant in SFRs offers several advantages over 

traditional water-cooled reactors, including superior 

thermo-physical properties and high thermal efficiency. 

A significant advancement in SFR design is the 

incorporation of gas heat exchange systems using 

supercritical carbon dioxide (S-CO2) or nitrogen in a 

Brayton cycle, which improves thermal efficiency and 

reduces water-related hazards. Sienicki et al. [2] 

demonstrated the benefits of the S-CO2 Brayton cycle 

for SFRs, highlighting its potential to eliminate sodium-

water reactions and reduce space and cost requirements. 

The non-water cooling systems make SFRs safer for 

deployment near residential areas, addressing 

environmental and safety concerns. International 

collaboration through the Generation IV International 

Forum (GIF) [1] has driven SFR technology 

development, promising improvements in fuel 

efficiency, waste management, and overall reactor 

performance, positioning SFRs as key to future 

sustainable energy solutions. 

In this study, burnup calculations were conducted 

using two Monte Carlo codes, MCNP [3] and 

SERPENT [4], to evaluate the effective multiplication 

factors, revealing a difference of up to 300 pcm between 

the codes. To further analyze and understand these 

discrepancies, detailed interpolation and extrapolation 

of the effective multiplication factors were carried out 

using advanced time series deep neural network 

algorithms. These algorithms provided more precise 

insights and predictions, enhancing our understanding 

and accuracy of the calculations. 

 

2. Methods and Results 

 

Two prominent reactor burnup Monte Carlo 

simulation codes, MCNP and SERPENT, are essential 

for calculating the depletion of the European Sodium 

Fast Reactor (ESFR) [5] with minimal modifications. In 

addition to traditional simulation methods, neural 

network deep learning algorithms have emerged as 

powerful tools for analyzing and predicting complex 

systems within reactor physics. 

 

2.1 ESFR with minimal modifications 

 

The European Sodium Fast Reactor (ESFR) is a 

prominent project within the Generation IV reactor 

development efforts, focusing on creating safer, more 

efficient nuclear reactors. The story of ESFR begins 

with the Collaborative Project on European Sodium Fast 

Reactor (CP-ESFR) and evolves into the European 

Sodium Fast Reactor Safety Measures Assessment and 

Research Tools (ESFR-SMART) project [6], 

highlighting continuous improvements in safety and 

performance. 

Initiated in 2009, the CP-ESFR project aimed to 

develop advanced nuclear reactors capable of efficient 

fuel use, waste reduction, and safe operation under 

various conditions. The project aimed to design a pool-

type Sodium Fast Reactor (SFR) with a power output of 

3600 MWth. Fig. 1 shows cross-sections of the core 

geometry as drawn by the MCNP and SERPENT codes. 

This design was intended to leverage the extensive 

operational experience of previous SFRs, such as the 

French Phenix and Superphenix reactors, while 

incorporating modern advancements in reactor 

technology. 

The CP-ESFR project laid the groundwork for the 

ESFR by establishing the basic design principles and 

reactor layout. The ESFR was designed to use mixed 

oxide fuel (U,Pu)O2, known for its high melting point 

and low swelling properties, making it suitable for high-

temperature and long-duration operations typical of fast 

reactors. The reactor's primary components, including 

the reactor core, primary pumps, intermediate heat 

exchangers (IHX), and decay heat removal systems 

(DHRS), were conceptualized to ensure robust and 

efficient operation. 

Building on the CP-ESFR project's foundation, the 

ESFR-SMART project was launched in 2017. This 

project aimed to refine and enhance the ESFR design, 

focusing particularly on safety measures in light of 

lessons learned from past reactor operations and recent 

nuclear incidents such as the Fukushima disaster. The 

ESFR-SMART project received funding from the 
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EURATOM Research and Training Programme, which 

underscores the European Union's commitment to 

advancing nuclear safety. 

Impressed by the evolution of the ESFR from the CP-

ESFR to the ESFR-SMART project and the continuous 

efforts to enhance the safety and performance of 

Sodium Fast Reactors, it is highly recommended for 

studying as a Generation IV reactor model with a 

promising future outlook. 

 

 
 

Fig. 1. Cross-sectional views of the core geometry as drawn 

by the MCNP and SERPENT codes. Inner core fuel assembly, 

outer core fuel assembly, control and shutdown device, 

diverse shutdown device, and reflectors are shown. 

 

2.2 Deep learning neural networks 

 

Deep learning neural networks have shown 

significant potential in time series forecasting, 

particularly when using rolling windows and regression 

techniques. These methods offer powerful tools for 

capturing complex patterns and dependencies in 

sequential data, which are often challenging to model 

with traditional approaches. 

    Time series forecasting [7] involves predicting future 

values based on previously observed values. Deep 

neural networks, with their ability to learn hierarchical 

representations and capture non-linear relationships, are 

well-suited for this task. The rolling windows technique 

is a popular method for transforming time series data 

into a supervised learning problem. This involves 

creating a series of overlapping sub-sequences from the 

original time series, which are then used to train the 

neural network. 

   Meanwhile, regression analysis in the context of deep 

learning neural networks [8] involves predicting a 

continuous output variable based on one or more input 

variables. By leveraging advanced architectures like 

Fully Connected Neural Networks, Convolutional 

Neural Networks, and Recurrent Neural Networks, and 

employing robust optimization and evaluation methods, 

deep learning models can achieve high accuracy and 

reliability in various regression tasks. Continuous 

advancements in this field promise even greater 

capabilities for tackling a wide range of real-world 

problems. 

 

2.3 Keff data (calculated by the MCNP code) 

forecasting     

 

 The relationship between Keff calculation and 

burnup study is crucial for managing nuclear reactor 

performance and safety. Accurate keff calculations 

enable efficient burnup planning, ensuring reactors 

operate safely and economically. Monte Carlo codes are 

highly beneficial for Keff calculation, as they simulate 

particle behavior and interactions precisely, capturing 

complex geometries and physics. Their versatility and 

detailed statistical analysis make them essential for 

criticality safety, reactor design, and operational 

planning. This interconnected relationship underpins 

reactor design, operation, and regulation. 

    Deep learning neural networks were employed to 

predict Keff values through a rolling windows technique, 

which transforms time series data into a supervised 

learning problem. This approach involves creating 

overlapping sub-sequences from the original time series, 

which are then used to train the neural network. This 

method enhances the precision of criticality safety and 

reactor operation planning by effectively capturing 

complex temporal patterns. This method leverages the 

strengths of DNNs in handling complex temporal 

patterns and can significantly enhance the precision of 

criticality safety and reactor operation planning. Proper 

implementation and evaluation can lead to robust and 

reliable Keff forecasts, supporting the safe and efficient 

management of nuclear reactors. 

 

 
Fig. 2. The effective multiplication factors, Keff, calculated by 

the MCNP code and estimated by neural networks, as a 

function of effective full power day (EFPD) for an European 

Sodium Fast Reactor (ESFR). 

 
Fig. 2 illustrates the application of forecasting Keff 

for ESFR using the MCNP code. Table I shows 

forecasted data values that are accurate within one 

sigma. The predictions of the multiplication factors are 

claimed to be within one sigma; however, the limited 

number of data points used in training the neural 

network poses a challenge to the overall accuracy. The 

known linear decrease in the Keff by approximately ten 

pcm per burnup step, with the exception of the initial 

step, is acknowledged. Despite this, the model’s 

predictions should be interpreted with caution, and 

future work will focus on expanding the dataset and 
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refining the model to better capture these stage-specific 

trends. 

   It is observed that all predicted values consistently 

overestimate the actual multiplication factors. This 

overestimation may stem from the conservative nature 

of the deep learning model employed, which is likely 

tuned to avoid under-prediction due to its potential 

safety implications in reactor operation. Additionally, 

the model's training process might have been influenced 

by an inherent bias in the dataset or the loss function 

used, which penalizes underestimation more heavily. 

 

Table I: Training and forecasting Keff for ESFR 

Training Data Forecas

ted Input Output 

1.01792  1.01640  1.01624  1.01591  1.01548  1.01562  

1.01640  1.01624  1.01591  1.01548  1.01541  1.01553  

1.01624  1.01591  1.01548  1.01541  1.01511  1.01524  

1.01591  1.01548  1.01541  1.01511  1.01485  1.01497  

1.01548  1.01541  1.01511  1.01485  1.01478  1.01482  

1.01541  1.01511  1.01485  1.01478  1.01453  1.01458  

1.01511  1.01485  1.01478  1.01453  1.01422  1.01440  

1.01485  1.01478  1.01453  1.01422  1.01401  1.01421  

1.01478  1.01453  1.01422  1.01401  1.01371  1.01393  

1.01453  1.01422  1.01401  1.01371  1.01362  1.01365  

1.01422  1.01401  1.01371  1.01362  1.01334  1.01347  

1.01401  1.01371  1.01362  1.01334      X 1.01347  

 

The second predicted value (1.01553) shows an 

increase compared to the MCNP value from the 

previous burnup step, which is counterintuitive given 

the expected trend of gradual reduction. This anomaly 

may be attributed to the neural network model's 

sensitivity to slight variations in the input data or the 

model overfitting to specific data patterns during 

training. For practical application, it is crucial to refine 

the model by incorporating more robust cross-validation 

techniques and possibly augmenting the training dataset 

to prevent such inconsistencies. Moreover, further 

tuning and regularization techniques should be explored 

to ensure that the model adheres closely to the expected 

physical trends. 

 

2.4 Keff data (calculated by the SERPENT code) 

regression 

 

Deep neural networks are highly effective in 

regression tasks, including estimating the Keff for 

nuclear reactor design. The multiplication factor Keff is 

a critical parameter in reactor physics that indicates 

whether a nuclear reactor is subcritical, critical, or 

supercritical. Fig. 3 shows the Keff values calculated by 

the SERPENT code and the regression results, which 

are in good agreement within statistical errors. It is 

essential to confirm that the same problem was indeed 

analyzed using both the MCNP and SERPENT codes. 

The noticeable difference in results between the two 

codes, particularly the reversal of the expected trend in 

the second and third burnup steps in the SERPENT 

analysis, warrants a detailed investigation. This 

discrepancy could arise from differences in the handling 

of burnup and neutron transport in the two codes. A 

thorough review of input files and modeling 

assumptions is necessary to identify potential causes. 

Additionally, further validation against experimental 

data or alternative simulations may be necessary to 

reconcile these differences and ensure the reliability of 

the methods employed. 

 

 
Fig. 3. The effective multiplication factors, Keff, calculated by 

the SERPENT code and estimated by neural networks, as a 

function of effective full power day (EFPD) for an European 

Sodium Fast Reactor (ESFR). 

 

3. Conclusions 

 

This study successfully demonstrated the 

effectiveness of deep neural networks in predicting the 

effective multiplication factor Keff for a European 

Sodium Fast Reactor (ESFR). The MCNP and 

SERPENT codes provided baseline calculations, 

revealing slight discrepancies within 300 pcm. Deep 

neural networks using time series forecasting and 

regression techniques showed excellent agreement with 

these calculations within statistical errors. These results 

confirm the potential of integrating traditional Monte 

Carlo simulations with advanced neural network 

algorithms to enhance accuracy and reliability in nuclear 

reactor burnup studies. The integration of Monte Carlo 

simulations with deep neural network algorithms 

demonstrates potential for improving reactor design and 

safety. However, the study's limitations, such as the 

small dataset and discrepancies between different codes, 

highlight the need for further data collection, model 

refinement, and cross-validation to ensure the method's 

reliability and practical applicability in nuclear reactor 

burnup studies. 
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