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1. Introduction 

 
The innovative small modular reactor (iSMR) is 

designed for soluble boron free and flexible operation in 

consideration of safety, economy, and flexibility. In 

order to implement the soluble boron free operation, 

excess reactivity control strategy and shutdown margin 

must be secured using burnable absorbers and control 

rods. Similarly, to perform the flexible operation, 

reactivity control strategy according to the power 

distribution is required. In order to satisfy these design 

requirements, it is important to develop optimized 

design methods for fuel assembly, fuel loading pattern, 

control rod program and core control strategy. In this 

study, we present an optimization method developed, 

inter alia, for the optimal fuel loading pattern layout. 

 

2. Methods 

 

2.1 Optimization Modeling 

 

Before performing reactor core design optimization, 

the objective function, design variables and constraints 

must be defined. In an optimization problem, the object 

to be found as an optimal value is known as the 

objective function; the variable that affects the value of 

the objective function and can be controlled is known as 

the design variable; and the conditions that must be 

satisfied in the design are known as constraints.  

Some objective functions were chosen for the loading 

pattern optimization; maximizing cycle length, 

minimizing peaking factor, and maximizing burnup of 

the fuel to be disposed. The layout of the loading 

pattern was selected as a design variable, and 

constraints were imposed on only placing specified fuel 

assemblies in specific locations. 

 

2.2 Simulated Annealing 

 

There are numerous methods for optimization. The 

commonly utilized differentiation-based optimization 

method is difficult to apply to combinatorial problems 

such as loading pattern placement. Differentiation is 

impossible due to the discrete nature of the design 

variables. In such case, a heuristic approach can be used. 

Simulated annealing, genetic algorithm, and tabu search 

are examples of heuristic methods that use probability 

to approach the optimal value. Among them, simulated 

annealing [1,2] was selected as the optimization method. 

The simulated annealing is an algorithm inspired by the 

phenomena of annealing, in which the internal energy is 

lowered as the molecular structure finds its optimal 

arrangement when a metal is slowly cooled from a high 

to a low temperature. This provides a suitable way for 

finding the optimal arrangement, such as the layout of 

the loading patterns. 

The process of the simulation annealing is shown in 

Fig. 1. 

 

START

Initialize the temperature T0

Generate a new state Snew 

and compute its energy E(Snew)

Generate a initial state S0 

and compute its energy E(S0)

p > r

Equilibrium state?

End of cooling?

END

Accept the new solution:

S � Snew,  E(S) � E(Snew)

Output the solution

Yes

Yes

No

No

Yes

No

Decrease temperature T

 
 

Fig. 1. Simulated annealing process 

 

First, select the initial temperature and state. Next, 

compare the objective functions of the current and new 

states to determine which state is optimal. The 

probability of accepting to a new state is determined by 

the formulas (1) and (2). 
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(1)   𝑝 = exp (−
∆𝐸

𝑘𝑇
) ;  ∆𝐸 = 𝐸𝑛𝑒𝑤 − 𝐸 

(2)   𝑟 = random[0,1] 
 

Where 𝐸 is the objective function (meaning internal 

energy in the annealing phenomena), 𝑇  denotes the 

parameter (meaning temperature in the annealing 

phenomena), and 𝑘 represents the Boltzmann constant. 

If this process is performed several times, lower the 

temperature and run it again; if the temperature is low 

enough, stop and output the solution. 

If the objective function is superior to the current 

state, it is accepted; nonetheless even if the objective 

function is poor, it is accepted on the basis of 

probability. This notion addresses the issue of 

optimization algorithms becoming stuck in local optima. 

The temperature parameter determines the probability 

of accepting a bad value. This parameter is big in the 

early stages of simulated annealing, so the likelihood of 

accepting is high, allowing a large region to be 

investigated, and it becomes small in the latter stages, 

so the probability of accepting is low, resulting in 

convergence toward the optimal direction. 

 

2.3 Multi-objective Optimization 

 

If there is only one objective function, comparing it is 

simple. However, if there are numerous objective 

functions, determining which value is optimal becomes 

more complicated. As a way of comparing multi-

objective functions, by giving weights to the objective 

functions, it is feasible to determine whether the 

representative value is optimal. There is another 

approach to determining the Pareto frontier [3]. The 

Pareto frontier is a set of solutions that represents the 

optimal trade-off between all the objective functions. 

The Pareto frontier refers to a solution that is not 

dominated by any other solution in the feasible solution 

space. 

 

2.4 Code Development 

 

An optimization program was developed by attaching 

the reactor core analysis code to the input/output file 

process modules. ASTRA (Advanced Static and 

Transient Reactor Analyzer) [4] served as the reactor 

core analysis code. After running the code, the desired 

objective functions are extracted from the output file 

and the input file is updated with new design variables. 

Simulated annealing compares the current objective 

function against the new objective function to 

determine whether to accept the new objective function, 

and the candidates' solutions are compared to determine 

whether to include them. If it has been sufficiently 

executed at one temperature step, it proceeds by cooling 

the temperature step, and after enough optimization 

steps have been conducted, the optimization is 

completed. 

 

3. Tests & Results 

 

Based on the above, peaking factor optimization was 

performed according to the loading pattern layout. 

Figure 2 depicts the core structure, which is octant 

symmetrical and measures 9 x 9. The fuel assembly is 

categorized into five types according to the 

concentration and number of burnable absorbers; A01, 

A02, A03, A04, and A05. When generating a new 

loading pattern, the positions of two random fuel 

assemblies are exchanged, or one fuel assembly is 

randomly replaced with another type. The multi-

objective functions were based on the Fq (local pin 

peaking factor) and Fr (radial pin peaking factor) values 

from the output file that was calculated using the 

ASTRA code. In the initial state, neighboring loading 

patterns were generated 100 times, and the initial 

temperature was determined to ensure that a new state 

was accepted with a probability of 0.99. In addition, the 

average and standard deviation of Fq and Fr were 

obtained from the 100 calculation result and 

standardized. The standardized values were combined 

and applied as a single value to the objective functions. 

The temperature is updated by multiplying a constant 

cooling rate, which is 0.95. Only the beginning of cycle 

was calculated. To assess the adequacy of the simulated 

annealing, randomly selected layouts were compared 

with the computed outcomes. Both simulated annealing 

and random sampling calculated 10,000 cases. 

 

 
Fig. 2. The core structure and octant symmetry 

 

Figure 3 shows the objective function (typical value) 

for the current state and the best state at each stage. 

While exploring a wide area, the current state exhibits 

worse values than the initial state at first, but it 

gradually converges to better values later on. 

 

 
Fig. 3. The objective function graph per stage 
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Figure 4 depicts the initial state values and candidates 

for different stages in terms of peaking factors. As the 

steps progressed, the objective functions found an 

acceptable optimal value and identified an adequate 

Pareto frontier. 

 

 
Fig. 4. Optimization candidates per stage 

 

Figure 5 displays the outcomes of random search and 

simulated annealing. Random search may produce good 

optima by coincidence, but methods that employ 

particular algorithms, such as simulated annealing, 

often return better results. 

 

 
Fig. 5. Candidates for random search and simulated annealing 

 

The optimal objective function derived from 10,000 

searches is provided in Table I, and the optimal loading 

pattern is shown in Fig. 6. 

 
Table I: Results of random search and simulated annealing 

Objective 

Function 

Initial  

State 

Random 

Search 

Simulated 

Annealing 

Fq 2.097 1.744 1.644 

Fr 1.441 1.357 1.286 

 

 
Fig. 6. The optimal loading pattern 

 

4. Conclusions 

 

Simulated annealing offers effective solutions to 

combinatorial optimization problems. The optimal 

loading pattern layout obtained in this study may not be 

an appropriate core design because it only considered 

peaking factors. However, if additional objective 

functions and constraints are considered, a more 

optimal solution can be obtained. 
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