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1. Introduction 

 

To achieve global net zero greenhouse gas emissions, 

the power system’s decarbonization has become 

increasingly important. Nuclear power is one of the 

major options to achieve carbon neutrality because of 

its low carbon footprint. In Korea, the i-SMR project 

has been in progress, focusing on improved safety and 

operational flexibility compared to conventional 

commercial light-water reactors [1],[2].  

Due to the high variability and limited controllability 

of renewable energy sources, fossil-fuel-based power 

sources have been used to ensure the supply-demand 

balance of the power grid because of their flexibility.[3] 

The flexible operation of nuclear power can reduce the 

share of carbon-based power sources while preventing 

the curtailment of renewable energy sources. 

Additionally, it can help reduce the operational and 

maintenance (O&M) costs of the entire power 

system.[4] 

However, there are already several obstacles that 

make flexible operation difficult. Examples of nuclear 

design include identifying optimal in-core loading 

patterns for flexible operation and defining the 

appropriate control rod positions for power adjustments 

during load-following operations. 

Conventional commercial nuclear power plants 

(NPPs) have typically served as the base load of power 

systems. Their control rods were used to perform 

emergency power control and shutdown procedures. 

In the case of i-SMR intended for flexible operation, 

control rods serve as mechanical shims. Furthermore, 

because soluble boron is not present, burnable absorbers 

must compensate for its lack, which uniformly 

suppresses reactivity within the core. 

These design features have resulted in a significant 

increase in the number of loading pattern (LP) cases 

that require analysis, demanding a speed up of the core 

analysis process. 

As AI technology has advanced, we now meet a 

variety of AI-based applications in our daily lives. 

Additionally, user-friendly machine learning 

frameworks have made it easy for non-experts to 

incorporate AI into their domains without requiring 

extensive AI knowledge. Among AI techniques, CNN 

is a specialized neural network for vision tasks. It serves 

a fundamental network in various domains, including 

object detection, segmentation, recognition, and image 

generation. Also, CNN have been used in core analysis. 

Some cases have utilized CNN to reconstruct core 

power distribution using core measurement data [5-7]. 

To speed up the loading pattern optimization process, 

several surrogate models were developed to predict core 

parameters. C. Wan et al. developed the CNN-based 

surrogate model and integrated with genetic 

algorithm[8]. In other cases, surrogate models were 

developed to be integrated with simulated annealing 

algorithm that includes screening technique[9-11]. This 

screening technique conditionally accept the results 

from surrogate model based on the probability 

distribution. 

Regarding the prediction of power distribution 

without in-core measurement data, there has been 

research focused on predicting the position and value of 

pin power peaking factor (PPPF). In this study, 26 

(24+2) axial layers were simplified into three regions, 

and form functions were used to enable the neural 

network to process the power distribution. Finally, the 

model outputs the assembly-wise power distribution, 

represented as 8x8x1[12]. 

In this paper, we present a surrogate model to 

accelerate the analysis of power distribution within the 

core. The training dataset was produced using the 

ASTRA core design code, and our CNN model was 

trained on it. The model predicted both pin-wise 2-D 

power distribution and assembly-wise 3-D power 

distribution. 

 

2. Methodology 

 

We used our surrogate model to do core analysis on 

the i-SMR design specification. Fuel composition types 

were classified into eight categories based on 

gadolinium enrichment, burnable rod arrangement, and 

the number of burnable rods within each composition. 

The number of burnable absorber rods that could be put 

in each composition was either 0, 12, 16, 20, 24, or 28. 

We only used the A type fuel batch, which was loaded 

in the first cycle of the core. 

 

2.1. Data Preparation 

 

The ASTRA core design code generated a total of 

37,532 data points. Of these, 32,089 were used to train 

the model, 3,754 for testing, and 1,689 for validation 

during the training process. we only produced the 
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training dataset for the beginning of the cycle (BOC) 

and evaluated the model’s performance. The model was 

developed to collect two sorts of input data. The 

primary input, also known as the main-input, was 

created utilizing the loading pattern and the matching 

nuclear cross-section of the fuel batches. 

 

 

Fig. 1 Control rod position map for (a) pin-wise 2-D power 

and (b) assembly-wise 3-D power distribution. 

The sub-input type differed between the 2-D and 3-D 

prediction cases. The sub-inputs in the 2-D case 

included the form function, enrichment map (uranium 

and gadolinium enrichment), and pin-wise control rod 

map (see Fig.1). In the 3-D case, only the assembly-

wise control rod map was considered as a sub-input. 

2.2. Pin-wise 2-D Power Distribution 

 

 
Fig. 2 Model architecture for 2-D pin-wise power distribution. 

 

The main-input data structure was a 3-D tensor of 

5x5x7, with the last dimension of 7 representing two 

group cross-sections. The sub-input data was an 85x85 

matrix. During the training process, each cell of 5x5 

matrix of the main input was upscaled horizontally into 

17x17 before being concatenated with the sub-input 

data. 

The residual block consisted of two parts. The first 

part contained two convolutional layers, while the 

second part was a shortcut layer. The first convolutional 

layer had the filter and kernel values from residual 

block. For example, if the residual block has parameters 

of (32, 5), the convolutional layer processes the tensor 

with 32 filters and a 5x5 kernel. After that, the tensor 

passes through another convolutional layer with 32 

filters and a 1x1 kernel. The second part of the block 

was the shortcut layer. The input tensor to the residual 

block is fed into this layer, which has 32 filters and a 

1x1 kernel. Finally, the outputs of the two parts are 

added together. The output form of the model was 

85x85 pin power distribution. The architecture of the 

model is depicted on Figure 2. 

 

2.3 Assembly-wise 3-D Power Distribution  

 

 

 

Fig. 3 Example of axial configuration of fuel batches. 

 

Fig. 4 Model architecture for 3-D assembly-wise power 

distribution. 

 

Each fuel batch assembly was consisted of 24 layers 

of fuel composition. The top layer of the A type batch 

was covered by a blanket made up of only 4 w/o U-235 

fuel rods and blank holes for control rods. The 

remaining 23 layers consisted of the same fuel 

compositions, which contained gadolinium burnable 

absorbers. Each composition had its own nuclear cross-

sections. The main input data consists of 4-D tensors 

with dimensions 24x5x5x7, representing an array of 3-

D tensors. The input tensor passes through residual 

blocks composed of 3D convolution layers, finally 

producing an output with dimensions 24x5x5x1.The 

architecture of the model is depicted on Figure 4. 

 

 

3. Results 

 
Table I: Errors of 2-D Pin Power Prediction 

Relative Error 
FF with Rod 

position 

Form 

Function 

Global mean 0.821% 1.388% 

Maximum mean error per LP 2.018% 4.363% 

Global max 73.532% 100.000% 

Averaging max error per LP 10.787% 20.354% 

Global mean of Peak value 

prediction 
0.462% 0.846% 

Global max of Peak value 

prediction 
3.393% 5.677% 

 

We examined performance improvements with and 

without control rod data. Tables I and II present the 

prediction error results for 2-D pin power distribution 

and 3-D assembly-wise power distribution respectively. 
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In both 2-D and 3-D models, adding control rod data 

reduced prediction errors across all the criteria. 

 
Table II: Errors of 3-D Assembly-wise Power Prediction 

Relative Error 
with Rod 

position 

only main-

input used 

Global mean 2.080% 2.296% 

Max of mean 6.959% 11.474% 

Global max 42.525% 113.106% 

Mean of max 11.522% 28.007% 

Global mean of Peak 

value prediction 
1.660% 4.761% 

Global max of Peak 

value prediction 
12.173% 33.251% 

 

 

4. Discussion 

 

4.1. Error analysis of 2-D Power Distribution 

 

Fig. 5 Global mean error distribution of  pin-wise 2-D power 

distribution (a) with control rod map and (b) without rod data.  

 

Fig. 6 Sorted relative max errors of 2-D pin power distribution 

(form function with control rod map data) 

Fig. 5 shows the global accumulated mean error 

distribution. The error distribution was calculated by 

averaging the error values across all datasets for each 

pin location. The left side of the plot depicts the 

inclusion of control rod data, whereas the right side 

depicts the usage of only the form function. Note that 

the two plots have different scales. The maximum value 

on the left side is approximately 3, whereas on the right 

side it is around 9. 

Fig. 6 shows the plot of examined maximum error, 

target power values, and predicted power values for 

each data point of the 2-D pin power distribution. The 

global maximum error was 73.532%, although the 

majority of errors were less than 5% over the whole 

dataset. 

Additionally, we investigated the sources of the large 

maximum errors. It was found that in all cases, the 

neural network predicted values lower than the already 

low target power values (e.g., predicting a power value 

of 0.1 as 0.02), causing large relative errors. Core 

power values in the periphery of the core region are 

relatively lower than those in other parts of the core 

region. This is supported by the observation of 

substantial relative errors in the peripheral regions of 

the core, as shown in Fig. 5. 

 

 

4.2. Error analysis of 3-D Power Distribution 

 

 

Fig. 7 Plane-wise relative mean error distribution of 3-D 

power distribution.  

 

 

Fig. 8 Axial relative mean error of 3-D power distribution. 

 

In Figure 7, we show the global plane-wise error 

distribution for 3-D assembly-wise prediction. In the 

axial direction, considerably high inaccuracy was 

noticed on the top side of core. In the horizontal 

directions, the location where the rod bank R4 is 

inserted has a higher inaccuracy than any other location 

of LP. The placement of the R4 rod bank is shown on 

right side of Fig.1. 
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4.3. Comparison with related work 

 

Previous study [12] utilized 3D convolutional layers 

to predict the assembly-wise PPPF. In that study, 26 

(24+2) axial layers were divided into three regions, with 

an input shape of 3x17x17x5. The final output of the 

model was either an 8x8x1 assembly-wise power 

distribution or a 1x1x1 PPPF value. 

In contrast, this paper did not simplify the axial 

layers into three regions. Instead, we used all 24 layers 

directly as input, producing a 3D power distribution 

output for the assemblies that encompasses all 24 layers. 

Unlike the previous study [12], which used a form 

function as an input to identify the PPPF value and 

location, we did not incorporate a form function. This is 

a preliminary investigation to validate the potential for 

predicting 3D assembly-wise power distribution, and 

the model was not optimized. Form functions and 

detailed pin-wise information are planned for future 

work on 3D pin-wise power distribution prediction." 

 

 

5. Conclusion 

 

We performed 2-D and 3-D power distribution 

predictions for the BOC of the initial core, achieving 

good accuracy and demonstrating the ability to speed up 

core analysis. For 2-D pin power prediction, each pin 

point’s relative error was less than 1%. Regarding 

computation time, the model took 5 seconds to predict 

3,754 loading pattern (LP) cases, or 1.3 milliseconds 

per case. We also confirmed that there is room for more 

research on 3-D power prediction. In the 2-D pin power 

distribution, the highest relative error is 73.532%. We 

conducted a thorough of our results, sorting them by 

high error values in the 2-D pin power case. The model 

underestimated lower target power values for cases that 

exceeded the 7% error threshold; no instances of 

overestimating high power values were noted. 

Regarding the pin-wise peak power prediction, we 

were able to obtain a global maximum of 3.393% and a 

relative mean error of 0.462%. 

With additional research and improvements, the 

model is expected to accelerate the reactor design 

process and provide guidelines for load-following 

operation through its inherent rapid computational 

speed. 
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