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1. Introduction 
 

 Calculating various interactions of neutrons with 
matters is an essential task for the reactor physics. This 
requires the distribution of neutron flux and their energy 
within the reactor. These distributions are acquired by 
solving neutron transport problems. Neutron transport 
follows the Boltzmann equation, solved using particle-
based  approaches, making it impossible to acquire the 
solution directly. With several assumptions, we can 
derive the neutron diffusion equation, which has better 
computational efficiency than the Boltzmann equation. 

Even with the neutron diffusion theory, calculating 
neutron flux distributions with high spatial resolution 
requires a huge computational load. For several of next-
generation nuclear reactors or cutting edge techniques 
for nuclear safety (e.g. digital twin), it is required that 
rapid neutronics analysis with high resolutions. 
Therefore, in these cases, we need to accelerate the 
neutronics simulations. 

Among simulation acceleration techniques, physics-
informed machine learning is spotlighted, because it can 
achieve better performance even with small dataset than 
traditional deep learning methods through embedding the 
physics information into the problem domains. In this 
study, we introduce an example of the physics-informed 
neural network (PINN)  for neutron transport simulation. 
We developed a PINN based on the diffusion equation, 
and compared its performance with a numerical solver [1] 
and an artificial neural network (ANN) for the Reed's 
problem [2]. 
 

2. Neutron diffusion problem 
 
The physics governing this problem is the neutron 

diffusion equation. The steady-state neutron diffusion 
equation for a slab geometry is represented by the 
following equation: 

−∇ ∙ 𝐷(𝑥)∇𝜙(𝑥) + Σ!(𝑥)𝜙(𝑥) 
= 	𝜈Σ"(𝑥)𝜙(𝑥) + 𝑄(𝑥)               (1) 

where, D is the diffusion coefficient, Sa is the 
macroscopic absorption cross-section, n is the average 
number of neutrons per fission, Sf is macroscopic fission 
cross-section, and the Q is the external source term.   

We also have two general boundary conditions: 
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The Reed’s problem is a test problem for neutron 

transport codes. It is a heterogeneous reactor problem 

that has several region. The problem we set up consists 
of following 5 regions: 

- strong absorber with a strong source from x=0~2, 
- strong absorber without source from x=2~3, 
- void from x=3~4, 
- scatter with source from x=5~7, and  
- scatter without source from x= 7~10. 

Fig. 1 depicts material properties of the Reed’ problem. 

 
Fig. 1. Material properties of the Reed's problem 
 

3. Physics-informed neural network 
 
We can embed the physics of the system using the 

PINN technique. The equation and conditions above are 
not considered during the design of the neural network 
structure but are considered during the design of the loss 
function. For this problem, we implemented a simple 
artificial neural network, which consists three hidden 
layers with 64 nodes each and an output layer. The neural 
network takes a value ‘x’ in one-dimension as an input 
and outputs the neutron flux.  

If the neural network is trained to minimize the error 
between true and estimated neutron fluxes, also called 
the fitting loss, it is just an ANN. To embed the physics 
information in neutronics analysis, we implemented the 
diffusion equation and two boundary conditions as loss 
functions. In PINN, the neural network is trained to 
minimize three loss functions: fitting loss, equation loss, 
and boundary condition losses.  Fig. 2 depicts the 
difference between ANN and PINN. 

   
Fig. 2 Physics-informed neural network for neutron 

diffusion simulation 

Input
!

D
en

se
 (
64

)
ta

nh
 a

ct
iv

at
io

n

D
en

se
 (
64

)
ta

nh
 a

ct
iv

at
io

n

D
en

se
 (
64

)
ta

nh
 a

ct
iv

at
io

n

D
en

se
 (
1)

lin
ea

r 
ac

ti
va

ti
o
n

Output
"#

Fitting	loss
avg(" − "#)!

Artificial neural network

Equation
−"# $

"$
"%& $
"$ + Σ! $ %& $ − Σ" $ %& $ − Q $ = 0

Boundary	condition
"%& 0
"$ = 0

%& ,
4 + #(,)2

"%&
"$1

#$%
= 0

Total	loss	=	Fitting		loss	+	Equation	loss	+	Boundary	condition	loss

Physics-informed neural network



Transactions of the Korean Nuclear Society Autumn Meeting 
Changwon, Korea, October 24-25, 2024 

 
 
 

4. Experimental results 
 

To test one of the benefits of the PINN, its strong 
performance with a small dataset, we trained both ANN 
and PINN with 10, 20, and 50 datapoints. Each network 
was implemented in the Python environment with the 
Tensorflow library [3]. Each network was trained during 
50,000 epochs, and the model whose loss was the 
minimum was used as final model. Fig. 3 depicts 
performance comparison results for the numerical solver, 
ANN, and PINN. For the numerical solver, intervals of 
numerical analysis were set to the number of datapoints 
used to train neural networks. As shown in Fig. 3, 
numerical solver showed the poorest results in all cases. 
PINN showed better results than ANN with small 
training points (see in Fig. 3 (a) and (b)). However, PINN 
showed slightly poorer results than ANN, when trained 
with 50 data points (see in Fig. 3 (c)).  
 

 
(a) 

 
(b) 

 
(c) 

Fig. 3 Experimental results of numerical solver, 
ANN, and PINN 

 
5. Conclusion 

 
In this study, we developed a PINN and compared its 

performance with numerical solver and ANN for a 
neutron transport problem. Experimental results showed 
that the PINN performed better than the ANN with a 
small dataset, but its performance decreased than the 
ANN as the dataset size increased. This may be due to 
one of the drawbacks of the PINN, having poor 
performance on the discontinuity, which could be 
improved through the further researches.  
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