
Transactions of the Korean Nuclear Society Autumn Meeting
Changwon, Korea, October 24-25, 2024

Introduction of the Automatic Verification and Validation System for the System Code
Quality Assurance

D. H. Kang a, M. J. Lee a, Y. S. Cho a, J. S. Suh a, T. Kim b

aSENTECH Co. Ltd., 105, Sinildong-ro, Daedeok-gu, Daejeon, Korea, 34324
bIncheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, Korea, 22012

*Corresponding author: dhkang@s2ntech.com

*Keywords : GitLab, CI/CD, Quality Assurance, SMR, System Code

1. Introduction

GitLab Continuous Integration and Continuous

Deployment (CI/CD) [1] is a continuous method of
software development, where you continuously build, test,
deploy, and monitor iterative code changes. In recent
years, the adoption of GitLab CI/CD practices has
become increasingly prevalent in software development
workflows (Fig. 1). GitLab CI/CD offers a streamlined
approach to software development, enabling developers
to automate the process of integrating code changes into
a shared repository and deploying applications to
production environments swiftly and reliably.

GitLab, a widely used platform for version control

and collaboration, provides robust features for
implementing CI/CD pipelines seamlessly within the
development workflow. By leveraging GitLab's CI/CD
capabilities, teams can automate the building, testing,
and deployment of their software applications, thereby
enhancing productivity and ensuring the consistency
and quality of code releases. GitLab is a powerful tool
that automates and integrates software development and
deployment processes, as it includes not only a code
repository but also CI/CD features.

Fig. 1. GitLab/GitLab-Runner execution flow [2]

GitLab CI/CD is an integrated continuous delivery
service provided by GitLab. It includes the following
key features:

- Set up a CI/CD pipeline: You can set up a
separate CI/CD pipeline for each project via
the .gitlab-ci.yml file.

- Automated builds and tests: You can
automatically run builds and tests when code is
pushed.

- Container-based execution environment: You can
use a container-based execution environment
such as Docker to maintain environment
consistency and simplify dependency
management.

- Continuous deployment: When builds and tests
are successful, you can automatically move to
the deployment stage.

The advantages of CI/CD extend beyond automation

and efficiency. Some key benefits include: [3]
- Improved Collaboration: CI/CD fosters a culture

of transparency and accountability by
encouraging collaboration among team members
by integrating code changes from multiple
developers into a central repository, making it
easy for developers to track changes, review
code, and provide feedback within the
development pipeline.

- Faster Time-to-Market: CI/CD automates the
build, test, and deployment processes, reducing
the time required to deliver new features or
updates to end users.

- Enhanced Quality Assurance: Developers can
run automated tests on each code commit to
immediately identify regressions or bugs. By
integrating tests into the development pipeline,
teams can maintain high code quality and
stability throughout the software development
life cycle.

- Increased Reliability: With CI/CD, the process
of deploying applications to production
environments becomes more reliable and
predictable.

- Scalability and Flexibility: CI/CD pipelines are
highly scalable and adaptable to the needs of
diverse development projects.

Transactions of the Korean Nuclear Society Autumn Meeting
Changwon, Korea, October 24-25, 2024

In this paper, we would like to introduce the process

of building a verification calculation environment based
on GitLab for system code evaluation in the project
"Development of base technology for regulatory
verification of light-water SMR accident analysis and
core design" as part of the small and medium-sized
reactor safety regulation foundation technology
development project being carried out as a new project
by the Nuclear Safety and Security Commission
(NSSC) and the Regulatory Research Management
Agency for SMRs (RMAS) [4].

2. Methods and Results

2.1 Building a GitLab-Based Verification and Validation
Calculation Environment for System Code Evaluation

GitLab will serve as a very effective platform for

building a verification and validation computation
environment for code evaluation and will perform
quality assurance on system code and computation
results.

(1) Continuous Integration and Deployment

CI/CD pipelines provide excellent capabilities for
continuously integrating and testing code changes to
improve quality and automatically deploying them.
CI/CD capabilities enable developers to quickly check
the quality of code changes and efficiently automate the
deployment process.

(2) Automated Quality Assurance

GitLab improves your QA process with automated
testing and verification & validation of code changes.
GitLab can help you efficiently carry out your QA
process and increase the stability and reliability of your
system code. Automating the QA process helps reduce
human errors and increase test coverage.

(3) Basic Configuration for Building a GitLab
Environment

Build a stage and job environment for CI/CD for
verification calculations based on accident scenarios.
Store the system code input deck for each accident
scenario in the "Input directory" and program a YML
(.gitlab-ci.yml)file for GitLab to perform verification
calculations in the "Run directory". Create an Excel file
with a list of graphs for each accident scenario and the
information required to create the graphs using Gnuplot.

(4) Basic a Code Environment based on GitLab/GitLab-
Runner

Configure the project with a GitLab server on the
LINUX operating system and a code development
environment (using FORTRAN compiler) on the
Windows operating system. Configure a system code
verification and validation calculation example project
using GitLab-Runner (as a submodule of the
verification calculation project) linked to the code
development environment. Create graphs using pre-
written Gnuplot script files using the results of system
code verification calculations for each accident scenario.

(5) Compare Feature

To ensure the reproducibility and reliability of the
verification results, we plan to add a feature to compare
previous results and with the latest results. With this
feature added, you can compare previous results graphs
and latest results graphs in one graph to see the
differences.

2.2 Enabling Scientific Computing with GitLab CI/CD

By harnessing the power of GitLab CI/CD,
researchers can streamline the execution of complex
simulations, facilitate collaboration, and enhance the
reproducibility of computational analyses. Through the
integration of GitLab CI/CD into our computational
workflow, we have demonstrated the feasibility of
automating repetitive tasks, such as directory
management, code execution, graph generation, and
report generation. This automation not only accelerates
the pace of scientific discovery but also improves the
reliability and traceability of computational results.

Fig. 2. Display of the System Code Quality Assurance with

GitLab CI/CD and GitLab-Runner.

3. Conclusions

GitLab offers numerous benefits, especially for
development teams and organizations that prioritize
collaboration, continuous integration/continuous delivery,
and development operations (DevOps) practices. Overall,
GitLab’s comprehensive features, flexibility, and strong
community support make it a powerful tool for modern
DevOps practices. We have built an environment for
verification calculations based on accident scenarios
using powerful tools and have enabled quality assurance
processes for verification calculations to be performed
efficiently, thereby increasing the safety and reliability of
the system code.

Transactions of the Korean Nuclear Society Autumn Meeting
Changwon, Korea, October 24-25, 2024

Acknowledgments

This work was supported by the Nuclear Safety

Research Program through the Regulatory Research
Management Agency for SMRs (RMAS) and the
Nuclear Safety and Security Commission (NSSC) of the
Republic of Korea (No. 1500-1501-409).

REFERENCES

[1] GitLab. 2024. Use CI/CD to build your application.
https://docs.gitlab.com/ee/topics/build_your_application.html.
[2] GitLab. 2024. Runner execution flow. https://docs.
gitlab.com/runner/.
[3] J. S. Suh, et al., Development of the Automatic Verification
and Validation System for the CUPID Code Quality Assurance,
KNS Spring Meeting Jeju, Korea, May 9-10, 2024.
[4] RMAS and NSSC, Development of Base Technology for
Light Water SMR Accident Analysis and Core Design
Regulation Verification, New project for the 2024 Small and
Medium-Sized Nuclear Reactor Safety Regulation Base
Technology Development Project, 2024.

