Development of a Hydraulic Resistance Correlation for the Heat Exchangers in a Pool-type Sodium-cooled Fast Reactor

> Churl Yoon*(cyoon@kaeri.re.kr), Huee-Youl Ye, and Jae Hyuk Eoh **Korea Atomic Energy Research Institute**

> > **Purposes and Ultimate Goal**

Purposes : 1) To develop a hydraulic resistance correlation for the shell-side fluid flows in the SFR heat exchangers as a form of the combination of conventional correlations 2) To verify the developed hydraulic resistance correlation **Ultimate Goal : Validation and Improvement of the proposed SALUS design**

Heat Exchangers for SALUS

SALUS (Small, Advanced, Long-cycled and Ultimate Safe SFR) reactor:

Hydraulic Resistance (HR) Model for CFD

Conventional Correlations:

Axial Pressure Drop along Straight Tune Bundles (Darcy Friction Factor Correlation)

- A pool-type sodium-cooled SFR (Sodium-cooled Fast Reactor) generating 100MWe with a long refueling period of ~20 years.
- Under design-development in KAERI

Heat Exchangers in Primary System:

- IHX(Intermediate Heat Exchanger) & DHX(Decay Heat Exchanger)
- **Both have a similar configuration**

Parameter	IHX	DHX
Number of Units	4	4
Heat Removal Capacity per Unit	97.8 MW _t	1.67 MW _t
Number of Tubes per Unit	1050	114
Total Tube Length	4.85 m	2.13 m
Active Tube Length	3.8 m	1.73 m
Shroud Inner Diameter	1.311 m	0.576 m
Shell-side Inlet Temp.	510 °C	360 °C
Shell-side Outlet Temp.	357.7 °C	251.1 °C
Shell-side Sodium Flowrate	341.4 kg/s	11.74 kg/s
Heating Tube Outer Diameter	17.9 mm	21.7 mm
Pitch-to-Diameter Ratio	1.5	1.5
Heat Transfer Tube Material	9Cr-1Mo-V	9Cr-1Mo-V
Number of Tube Support Plate	5	2

Fig. SALUS Primary System

Fig. Schematics of SALUS DHX

Pressure Drop across a Support(Grid) Plate (Idelchik's Handbook Diagram 3-12)

 $\Delta P_{Grid} = K_i \frac{1}{2} \rho u^2 + \xi_{fr} \quad \text{, with } K_i = \frac{\Delta P}{\rho u_0^2 / 2} = \left(1.707 - \overline{f}\right)^2 \cdot \frac{1}{\overline{f}^2}$ ξ_{fr} = potential friction loss

4th section

5th section

6th section

 $\overline{f} = (\text{actual flow area})/(\text{frontal flow area})$

low passing regio on grid plate

Fig. iHELP Experiment

Newly Developed Correlation: ^{regions} 1st section $\Delta P_{Total} = \Delta P_{axial} + \mathbf{F} \cdot \Delta P_{Grid} = \Delta P_{Measured}$ 2nd section 3rd section

Correction Factor (to be obtained)

- **Extended applicability**
- Depending on power level

(as a function of **Re number**)

Correction Factor, *F*

Obtained Correction Factor:

- A Fitting Curve was generated by using the Origin software.

 $F = Y_0 + A_1 \exp(-\text{Re}/T_1) + A_2 \exp(-\text{Re}/T_2)$ Where $Y_0 = 0.28461$, $A_1 = 0.12876$, $A_2 = 4971.3016, T_1 = 8895.01778$ and $T_2 = 80.68048$

- Simulated pressure drops of the conceptual channel agree well with the iHELP experimental data.

Checking the Design Requirement of a SALUS DHX

Design Requirements:

- Design parameters for operating (stand-by) condition

Design Parameter	PDHRS (Passive)	ADHRS (Active)
Number of Units	2	2
Heat Removal Rate per Unit	1.67 MW _t	1.67 MW _t
Shell-side Sodium Flow Rate	11.73 kg/s	11.73 kg/s
Shell-side Inlet/Outlet Temp	360.0/251.1 °C	360.0/251.1 °C

Validation:

leating

- A sodium pool with a DHX unit was designed for validation.
- Check the sodium mass flow rate, resulted from the given heat removal rate.

Applications & Future Works

Applications:

- Current design of SALUS DHX shows **DHX** inlet surrounded by narrow guide cylinder. - Advanced HR

correlation can be applied for studying guide cylinder effect on **DHX inlet flows.**

Future Works: 1) Establishing ¹/₄

Cylinde

KAERI

한국원자력연구원

Korea Atomic Energy Research Institute

314.0 216.0 118.0 Fig. ¹/₄ PHTS Model

412.0

KNS Autumn Meeting, Changwon, Oct. 24-25, 2024