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1. Introduction 

 
During a severe accident, radioactive materials 

emitted from a damaged reactor core can be rapidly 

and/or massively released into the environment due to 

containment leakage and rupture throughout the 

progression of the accident. To minimize the release of 

radioactive materials into the environment, an accurate 

diagnosis of the initial accident state and appropriate 

decision making for mitigation action are required. 

Traditionally, procedures for accident diagnosis and 

computational code for severe accidents analysis can be 

used to predict the progression of accident. However, 

using computational codes for accident prediction 

requires a significant amount of time. 

In this study, the artificial intelligence (AI) models 

for rapid diagnosis and prediction during severe 

accident state are developed using Convolutional 

Transformer (ConvTran)[1] and ensemble Quantile 

RNN (eQRNN)[2]. 

 

2. Methods and Results 

 

The model used in this study is structured as shown 

in Fig 1. It is divided into an encoder part that 

‘understands’ the input time series data and diagnoses 

the accident state, and a decoder part that ‘predicts’ 

which mitigate measure will result in the lowest amount 

of radioactive material emissions by injecting the 

corresponding mitigate measure for the accident. This 

approach allows us to rapidly diagnose the state of 

severe accident and quickly determine the most suitable 

mitigation strategy. 

 

 
Fig 1. Artificial Intelligence Model Concept Map 

 

2.1 Training Dataset 

 

A large amount of data is required to train AI models, 

but because severe accidents are extremely rare event, it 

is difficult to obtain real data of the severe accident, 

postulated accident data generated through 

computational codes are utilized. In this study, AI 

models are trained using datasets generated through the 

Modular Accident Analysis Program v5 (MAAP5)[4]. 

The postulated accidents are generated by assuming a 

Large Loss-of-Coolant Accident (LLOCA) as an initial 

event in APR1400. Time series data are obtained for a 

total 208 scenarios by applying various mitigation 

action and strategies. 

 

2.2 Diagnosis Model 

 

We use ConvTran as a model to diagnose accident 

states. The ConvTran model has the advantage of 

effectively learning temporal and spatial data patterns 

by combining the advantages of Convolutional Neural 

Network and Transformer architectures. Since the 

purpose of this study is to extract and analyze accident 

features from various variable occurring in nuclear 

power plants, we used ConvTran as a model to diagnose 

accident conditions.  

 
Table I. Input and output data of ConvTran 

Input data of ConvTran 

Symbol Definition Symbol Definition 

PPZ PZR pressure 
ZWDC2SG 

(1, 2) 
SG water level 

ZWPZ PZR water level PSGGEN SG pressure 

TSUBCORE 
Subcooling 

margin 

WFWSGE 

(1, 2) 
SG injection rate 

RCSINFLOW 
RCS injection 

flow 
PEX0(9) 

Containment 

pressure 

TWRCS 

(10, 15, 20, 25, 

30, 40) 

Hot/Cold leg 

temperature 
TGRB(9) 

Containment 

temperature 

TCREXIT CET temperature 

WSPAXX 

WSPBXX 

WSPCXX 

Containment 

spray rate 

RCSLEAK RCS leak rate ZWRB(1) 
Cavity water 

level 

ZWV 
Reactor water 

level 
- 

Output of ConvTran 

Classification Break size Sequence 

Class 0 20 Condition 0 

Class 1 DEGB Condition 0 

Class 2 20 Condition 1 

Class 3 DEGB Condition 1 
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Table II. The sequence of event used for analysis 

Severe Accident Sequence of Event 

 SIT SIP 

Condition 0 O X 

Condition 1 X - 

 

The input variables used in the ConvTran model 

include 25 variables, such as the pressure and water 

level of the pressurizer and the steam generator, and 

shown in Table I. The output of the model is a four-

term classification, with two severe accident sequence 

of event such as Safety Injection Tank (SIT) injection 

and Safety Injection Pump (SIP), for two fracture sizes, 

that is 20 inch and Double-Ended Guillotine Break 

(DEGB) shown in Table I. 

Performance evaluation of the classification model is 

based on ‘Precision’, ‘Recall’, and ‘F1-score’. Precision 

measures the proportion of correctly predicted positive 

classifications, while Recall assesses the proportion of 

actual positives correctly predicted by the model. The 

F1-score is the harmonic mean of Precision and Recall, 

used to balance their performance. We evaluate the 

model’s performance primarily based on F1-score. 

The number of time steps used for classification in 

time series data referred to as the window size. For 

instance, if a classification model is configured with a 

window size of 12 for data sampled at 300-second 

intervals, it analyzes data patterns over a 1 hour period.  

To diagnose accident conditions, we experimented with 

window sizes of 4, 6 and 12, corresponding 20, 30 and 

60 minutes post incident, respectively. 

For learning the diagnostic model, we used data 

created by shifting time series data for 208 scenarios 

with 52 different operator actions per 4 classes as listed 

in Table 2. by a set of window size. For example, when 

the window size is 12, 208 data with 300 second 

intervals over 72 hours are shifted with a window size 

of 12, generating 891,310 window data for ConvTran 

input. The total of 891,310 data was divided into train, 

validation, test ratios of 8:1:1, and the train dataset was 

713,048, the validation dataset was 89,131, and the test 

dataset was also 89,131 to conduct learning and 

inference. 

 
Table III. ConvTran results according to window size 

Window size 4 6 12 

Precision 0.861 0.901 0.995 

Recall 0.851 0.899 0.995 

F1-score 0.856 0.900 0.995 

 
Table IV. Confusion Matrix for ConvTran 

True | Pred Class 0 Class 1 Class 2 Class 3 

Class 0 22503 0 0 0 

Class 1 92 21909 123 5 

Class 2 115 0 22017 67 

Class 3 0 0 1 22299 

The experimental results indicate that the window 

size 12 yields the highest Precision, Recall, and F1-

score values. This suggests that the diagnosing the 

accident status can be performed with high accuracy 

using data from 60 minutes after the initial incident. 

Additionally, when the window size is reduced to 6, 

meaning that the accident status is diagnosed using data 

from 30 minutes after the initial incident, the F1-score 

remains relatively high at 0.9. 

 

2.3 Prediction Model 

 

The eQRNN model is used as a model to predict the 

release of radioactive materials. The eQRNN model has 

strengths in handling nonlinear time series data and is 

very useful in predicting the release of radioactive 

materials over time. Likewise, when radioactive 

materials are released or reduced, they do not always 

follow a linear pattern, but rather a nonlinear time series. 

Therefore, we judged that the eQRNN model is suitable 

for predicting the amount of radioactive materials 

released. Additionally, to increase the reliability of the 

prediction, we used quantile loss to indicate the 

confidence range of the prediction. The input of the 

model is defined as an accident number that can 

represent the current status of the power plant and 

mitigate measures, and is used together with an 8-

dimensional position encoding vector. The output of the 

model was configured to predict the mass fraction of Cs 

or I in the Dome area and the Upper Compartment area 

with 720 time steps. 

Performance evaluation of the prediction model uses 

the R2-score. The R2 score calculated as 1 minus the 

ratio of the sum of squared residuals to the sum of 

squared differences from the mean of the actual values. 

It measures how well the model’s predictions match the 

actual data. The R2-score ranges from 0 to 1, with 

higher values indicating a better fit of the model to the 

data. 

We use the eQRNN model to predict mass fraction 

changes of Cs and I in the containment building for 208 

scenarios of LLOCA. However, we judged that 208 

data were not enough to train the prediction model, so 

we added Gaussian noise to the data. The noise was 

injected 20 times in different ways for each data. 

Therefore, the data used for training was 4160 data with 

added noise, and the original data without noise was 

used for inference. 

The R2-scores are all above 0.98, indicating excellent 

prediction performance. Given that the model predicts 

720 steps with a time step interval of 300 seconds, it is 

capable of forecasting changes for approximately 60 

hours after the implementation of response measures. 

Fig2. below show the change in the mass fraction of 

Cs or I when a specific mitigation measures, such as the 

combination SIP operation, Cavity Flooding System 

(CFS) valve opening, Containment Spray Pump (CSP) 

startup, and action time, are injected into each class 

classified by ConvTran. 
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Fig 2. eQRNN prediction results 

 

 

3. Conclusions 

 

In this study, the performance of two models was 

evaluated by simulating four scenarios during the initial 

phase of LLOCA. The ConvTran model demonstrated 

high accuracy in diagnosing the state of the plant in the 

early stage of the accident, and the eQRNN model 

excelled in predicting the mass fractions of Cs and I 

within the containment. Combining these two models 

could significantly enhance the reliability of both 

diagnosing and predicting the accident conditions. 

These results can contribute to shortening the 

accident response time and minimizing the potential 

release of radioactive materials by providing rapid and 

accurate plant status information to nuclear power plant 

operators by enabling optimal mitigation measures. 

We diagnosed and predicted the optimal mitigation 

measures for the LLOCA accident sequence. If further 

research is conducted to diagnose and predict not only 

LLOCA but also various type of initial accident, the 

reliability of selecting mitigation measures to reduce the 

release of radioactive materials in the event of a severe 

accident can be improved. 
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