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1. Introduction 

 
In the probabilistic safety assessment (PSA) of nuclear 

power plants, most component failures are considered 
independent, excluding the following three: human 
failure events, common-cause failures, and correlated 
seismic failures.  

Correlated seismic failures become dependent when 
multiple components fail simultaneously because of an 
earthquake event. Component failures with high 
correlations are combined into a single component 
failure for application in the fault tree. The combination 
probabilities of correlated seismic failures can be 
calculated using multivariate normal (MVN) integration 
[1], which was proposed in the NUREG-7237 [2] report. 
However, the limitations of MVN integration are as 
follows: (1) The calculation becomes impossible when 
the number of failed components increases beyond a 
certain threshold. (2) The probability of a failure 
combination cannot be calculated when correlated and 
uncorrelated failures coexist. (3) Calculations cannot be 
performed across multiple types of distributions, such as 
the standard normal distribution, log-normal distribution, 
exponential distribution, and others. To address these 
limitations, this paper proposes Monte Carlo sampling to 
calculate the failure combination probabilities for both 
correlated and uncorrelated failures. 

In a prior study [1], the CORrelation Explicit (COREX) 
software program, developed based on MVN integration 
by Sejong University in 2019, was used to calculate the 
combined probabilities of correlated seismic failures. 
However, considering the aforementioned limitations of 
MVN integration, the method was updated to calculate 
the combined probabilities of correlated seismic failures 
via Monte Carlo sampling [2]. In the present study, the 
failure combination probabilities for both correlated 
seismic failures and uncorrelated failures (random 
failures) were calculated, as described in the following 
sections. 
 

2. Monte Carlo sampling method 
 
2.1 Failure probability for a single component 

 
The basic principle of Monte Carlo sampling involves 

sampling the Capacity A of a component T times. If 𝐴 is 
less than a specified ground acceleration 𝑎 , the 
component is considered to have failed, and vice versa. 

If Component 𝐴 fails a certain number of times 𝐹 out of 
the total number of samples 𝑇 , the failure probability 
𝑃(𝑎) is expressed as 
 

𝑃(𝑎) = 𝑃(𝐴 < 𝑎) ≈ 𝐹/ 𝑇. (1) 

 
Eq. (1) represents the procedure for calculating the 

failure probability of a single component. As described 
earlier, this calculation can be performed regardless of 
whether correlations are considered. An example of 
calculating the individual failure probabilities for 
multiple components is also shown in Eq. (2): 

 
𝑃(𝑎) = 𝑃(𝐴ଵ < 𝑎) ≈ 𝐹/𝑇 
𝑃(𝑎) = 𝑃(𝐴ଶ < 𝑎) ≈ 𝐹/𝑇 
                            ⋮ 
𝑃(𝑎) = 𝑃(𝐴 < 𝑎) ≈ 𝐹/𝑇 
𝑃(𝑎) = 𝑃(𝐴ାଵ < 𝑎) ≈ 𝐹/𝑇 
                            ⋮ 
𝑃(𝑎) = 𝑃(𝐴ିଵ < 𝑎) ≈ 𝐹/𝑇 
𝑃(𝑎) = 𝑃(𝐴 < 𝑎) ≈ 𝐹/𝑇 

𝐴ଵ …  𝐴: 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑 𝑠𝑒𝑖𝑠𝑚𝑖𝑐 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠 

𝐴ାଵ …  𝐴: 𝑅𝑎𝑛𝑑𝑜𝑚𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠. 

(2) 

 
In Eq. (2), the capacities of correlated failed 

components 𝐴ଵ – 𝐴  are sampled from an MVN 
distribution, while the capacities of uncorrelated failed 
components 𝐴ାଵ –𝐴  are sampled from a log-normal 
distribution.  

 
2.2 Failure probability of multiple components 
 

Eqs. (1) and (2) represent the procedure for 
determining the individual failure probabilities for 
uncorrelated components. Conversely, the failure 
combination probability for correlated components is 
determined using AND/OR logic. When the failures of 
components are combined using OR logic, the set of 
capacities [𝐴ଵ, 𝐴ଶ, … ] is sampled 𝑇 times. If at least one 
component’s capacity is less than the ground 
acceleration a, it is considered an OR logic failure. If 
such failures occur 𝐹 times, the OR logic combination 
probability is calculated using Eq. (3): 

 
𝑃(𝑎) = 𝑃(𝐴ଵ < 𝑎 ∪  𝐴ଶ < 𝑎 ∪ ⋯ ) ≈ 𝐹/ 𝑇. (3) 
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As explained earlier, if the capacity A of each 
component is less than the ground acceleration a, the 
component is considered to have failed and is 
represented by “1”; otherwise, it is represented by “0.” A 
simple example of applying OR logic is shown in Eq. (4): 
 

[𝐴ଵ, 𝐴ଶ, 𝐴ଷ, … ] = [… ,0,1,0 … ]. (4) 

 
As shown in Eq. (4), based on OR logic, a failure is 

considered to occur when all the correlated components 
fail. Therefore, if OR logic failure occurs 𝐹 times out of 
𝑇 times, the failure combination probability is 𝐹/𝑇. 

When the failures of components are combined using 
AND logic, the set of capacities [𝐴ଵ, 𝐴ଶ, … ] is sampled 
𝑇 times. If at least one component’s capacity is less than 
the ground acceleration a, it is considered an AND logic 
failure. If such failures occur 𝐹  times, the AND logic 
combination probability is determined using Eq. (4) and 
(5): 
 

𝑃(𝐴ଵ < 𝑎  ∩  𝐴ଶ < 𝑎  ∩  ⋯  ) ≈ 𝐹/ 𝑇, (5) 

 
[𝐴ଵ, 𝐴ଶ, 𝐴ଷ, 𝐴ସ, … ] = [1,1,1, … ] 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓𝑎𝑖𝑙𝑢𝑟𝑒𝑠. (6) 

 
As shown in Eq. (6), based on AND logic, a failure is 

considered to occur when all the correlated components 
fail. If AND logic failure occurs F times out of T times, 
the failure combination probability is 𝐹/𝑇. 

The procedures described in Sections 2.1 and 2.2 were 
used to determine the failure combination probability for 
correlated components. Section 2.3 explains the 
procedure of Monte Carlo sampling in detail. 

Unlike MVN integration, in which the correlations 
among components are considered, Monte Carlo 
sampling incorporates correlations by applying the 
Cholesky decomposition of the covariance matrix (Eq. 
(8)) to log-normally distributed component capacities [4]. 
Thus, the correlations are considered during the sampling 
process. The seismic capacity of components can be 
determined using Eqs. (7)–(11). Additionally, after 
sampling the failure probabilities of the components, the 
failure combination probability can be calculated by 
dividing the number of failures of correlated components 
by the total number of samples. 
 
2.3 Procedure of Monte Carlo sampling 
 

 

 
Fig. 1. Flowchart illustrating Monte Carlo sampling 
procedure 
 

The process depicted in Fig. 1 can be explained as 
follows: 
 

𝑍௧ = [𝑍ଵ, 𝑍ଶ, … , 𝑍]௧ (7) 

 
(Step 1) Generate random numbers from a standard 

normal distribution that do not reflect correlation. These 
random numbers will be used in the next step to create 
correlated values. 

 

𝛴 =

⎣
⎢
⎢
⎡

𝛽ଵ
ଶ 𝛽ଵ

ଶ ⋯ 𝛽ଵ
ଶ

𝛽ଶଵ
ଶ 𝛽ଶ

ଶ ⋯ 𝛽ଶ
ଶ

⋯ ⋯ ⋯ ⋯
𝛽ଵ

ଶ 𝛽ଶ
ଶ ⋯ 𝛽

ଶ ⎦
⎥
⎥
⎤

 

= ൦

βଵ 0 ⋯ 0
βଶଵ βଶ ⋯ 0
⋯ ⋯ ⋯ ⋯

βଵ βଶ ⋯ β

൪ ൦

βଵ βଵଶ ⋯ βଵ

0 βଶ ⋯ βଶ

⋯ ⋯ ⋯ ⋯
0 0 ⋯ β

൪ 

= 𝐶𝐶௧, 

(8) 

  

𝜇௧ = [𝜇ଵ, 𝜇ଶ, … , 𝜇]௧  

= [𝑙𝑛(𝐴ଵ), 𝑙𝑛(𝐴ଶ), … , 𝑙𝑛(𝐴)]௧, 

 

(9) 

𝑋 = 𝐶𝑍 +  𝜇. (10) 

 
 (Step 2) Calculate the correlated values in Eq. (9) 

using the random numbers generated in Step 1 and Eqs. 
(6)–(8). Here, C is the lower triangular matrix obtained 
via Cholesky decomposition of the covariance matrix in 
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Eq. (6). Cholesky decomposition is used to transform 
independent standard normal random numbers into 
correlated random numbers through the process 
expressed in Eq. (10). 

 
𝐴௧ = [𝐴ଵ, 𝐴ଶ, … , 𝐴]௧ 

= [𝑒𝑥𝑝(𝑋ଵ), 𝑒𝑥𝑝(𝑋ଶ), … , 𝑒𝑥𝑝(𝑋)]௧. 
(11) 

 
(Step 3) Apply the exponential function to the 

correlated random values to obtain the capacities, since 
the seismic capacity values of the components follow a 
log-normal distribution [3], as shown in Eq. (11).  

(Step 4) Determine if the calculated capacity value for 
each component is less than the given ground 
acceleration 𝑎. If so, the component is considered to have 
failed, referencing Eq. (11).  

(Step 5) Apply OR logic as shown in Eq. (3). OR logic 
failure is considered to have occurred if any one of the 
correlated components fails. Apply AND logic as shown 
in Eq. (5). AND logic failure is considered to have 
occurred if all the correlated components fail.  

 (Step 6) Calculate the failure probability by taking 𝑇 
samples and determining the number of failures 𝐹. The 
failure probability is 𝐹/𝑇. 

Monte Carlo sampling offers the following advantages: 
(1) Calculation remains possible even as the number of 
failure components increases. (2) The probability of a 
failure combination can be calculated even when 
correlated and uncorrelated failures coexist. (3) 
Calculations can be performed across various types of 
distributions, such as the standard normal distribution, 
log-normal distribution, exponential distribution, and 
others. 

Monte Carlo sampling has been integrated into 
COREX [1]. Therefore, COREX can be used to perform 
logical calculations based on the MVN integration 
method as well as the versatile Monte Carlo sampling 
method, which imposes no limit on the number of failure 
components. 
 

3. Application  
 
The combined probabilities of correlated seismic 

failures and random failures were calculated using the 
Monte Carlo sampling method described in Section 2, 
and the calculations were performed with one million 
samples. 

 
Table 1. Correlated random failures (𝑋ଵ–𝑋ଷ) [1] 

Ground acceleration a 1.0 

Median capacity 
𝐴ଵ 0.8 

𝐴ଶ 1.0 
𝐴ଷ 1.2 

Covariance 
 

𝛽ଶ = 
0.32 0.08 0.18
0.08 0.5 0.32
0.18 0.32 0.72

൩ 

𝛽ோଵ = 𝛽ଵ 0.4 

𝛽ோଶ = 𝛽ଶ 0.5 
𝛽ோଶ = 𝛽ଶ 0.6 

𝛽ோଵଶ = 𝛽ଵଶ 0.2 
𝛽ோଵଷ = 𝛽ଵଷ 0.3 
𝛽ோଶଷ = 𝛽ଶଷ 0.4 

𝛽ோଵ = ට𝛽ோ
ଶ + 𝛽

ଶ  𝑎𝑛𝑑 𝛽 = 𝛽 = ට𝛽ோ
ଶ + 𝛽

ଶ  

Table 1 presents the input conditions used in the initial 
study [1] to calculate the combined probabilities of 
correlated seismic failures through MVN integration. 
Based on these conditions, we aimed to calculate the 
failure combination probabilities of correlated seismic 
failures and random failures via Monte Carlo sampling. 

 
Table 2. Noncorrelated random failures (𝑋ସ–𝑋) 

Ground acceleration a 1.0 

Median capacity 
𝐴ସ 1.0 

𝐴ହ 1.2 
𝐴 1.4 

Standard deviation 
 

𝛽ଶ = 
0.5 0 0
0 0.72 0
0 0 0.98

൩ 

 
Tables 1 and 2 summarize the input data for COREX. 

Table 1 presents the conditions for the three correlated 
components, while Table 2 compiles the input data for 
the uncorrelated components. In this study, sampling was 
conducted on six components, three correlated and three 
uncorrelated. 
 

 
Fig. 2. AND combination of failure components 

 

 
Fig. 3. OR combination of failure components 

 
The failure combination probability for the six 

components was calculated using AND/OR logic, as 
shown in Figs. 2 and 3. The failure probability of the 
correlated components was calculated as explained in 
Section 2, while that of the uncorrelated components 
(random failures) was determined through sampling 
from a log-normal distribution (assuming that the 
capacity of the components followed such a distribution). 

 
Table 3. Sampling validation 

 Mean value 
(input) 

Mean value 
(sampled random 

numbers) 
𝑋ଵ −0.2231 −0.2224 

𝑋ଶ 0 0.0019 
𝑋ଷ 0.1823 0.1786 
𝑋ସ 0 0.0052 
𝑋ହ 0.1823 0.1895 
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𝑋 0.3365 0.3321 

 
Table 3 shows the validation results for the Monte 

Carlo sampling for 𝑋ଵ–𝑋 . The small margin of error 
indicates that the sampling was conducted appropriately. 

 
Table 4. Failure combination probabilities calculated 

via Monte Carlo sampling  
AND-based method OR-based method 

𝑷𝟏 0.653113 𝑷𝟏 0.653113 
𝑷𝟐 0.499853 𝑷𝟐 0.499853 
𝑷𝟑 0.414818 𝑷𝟑 0.414818 
𝑷𝟒 0.499394 𝑷𝟒 0.499394 
𝑷𝟓 0.400770 𝑷𝟓 0.400770 
𝑷𝟔 0.365010 𝑷𝟔 0.365010 
𝑷𝟏𝟐 0.356083 𝑷𝟏ା𝟐 0.796883 
𝑷𝟏𝟑 0.325077 𝑷𝟏ା𝟑 0.742854 
𝑷𝟏𝟒 0.325855 𝑷𝟏ା𝟒 0.826652 
𝑷𝟏𝟓 0.262151 𝑷𝟏ା𝟓 0.791732 
𝑷𝟏𝟔 0.238425 𝑷𝟏ା𝟔 0.779697 
𝑷𝟐𝟑 0.294584 𝑷𝟐ା𝟑 0.620087 
𝑷𝟐𝟒 0.249782 𝑷𝟐ା𝟒 0.749465 
𝑷𝟐𝟓 0.200238 𝑷𝟐ା𝟓 0.700385 
𝑷𝟐𝟔 0.182716 𝑷𝟐ା𝟔 0.682146 

⋮ ⋮ ⋮ ⋮ 

𝑷𝟏𝟐𝟑𝟒𝟓𝟔 0.017089 𝑷𝟏ା𝟐ା𝟑ା𝟒ା𝟓ା𝟔 0.966714 

 
Table 4 presents the failure combination probabilities 

calculated via Monte Carlo sampling based on AND and 
OR logic. As seen in Table 4, Monte Carlo sampling 
allows for the calculation of failure combination 
probabilities for both correlated and uncorrelated failures, 
enabling the computation of all combinations. As this 
method has been implemented in COREX, it can 
calculate failure probabilities through MVN integration 
and Monte Carlo sampling, as well as the failure 
combination probabilities for both correlated and 
uncorrelated failures. 

 
4. Conclusions 

 
In this study, the Monte Carlo sampling method was 

integrated into COREX, a software tool developed to 
calculate the failure probabilities of correlated seismic 
failures. This method offers the following advantages: (1) 
It enables calculations regardless of the number of 
correlated components. (2) It also enables calculations 
regardless of the distribution of component capacities. (3) 
It enables calculations even when the fault tree contains 
both correlated and uncorrelated failures. 

By leveraging advantages (2) and (3), we calculated 
the failure probabilities and failure combination 
probabilities of correlated seismic failures, the failure 
probabilities of random uncorrelated failures, and the 
combined failure probabilities of both types of failures. 
Moreover, we incorporated these functions into the 
existing COREX program, which could previously 
calculate failure probabilities through only MVN 
integration. Thus, COREX can now perform calculations 
via both Monte Carlo sampling and MVN integration. 

These methods are significantly more accurate and 
versatile than the previous approach used in seismic PSA, 
which involved calculating failure probabilities by 
converting highly correlated components into a single 
component. 

Therefore, using the updated version of COREX will 
ensure more accurate core damage frequency 
calculations compared with traditional seismic PSA. 
 

Acknowledgement 
This work was supported by a Korea Foundation Of 

Nuclear Safety (KOFONS) grant funded by the Nuclear 
Safety and Security Commission (NSSC), Republic of 
Korea (No. RS-2022-KN067010 and RS-2021-
KN050610). 
 

REFERENCES 
 

[1] W.S. Jung, K. Hwang, S.K. Park, A New Methodology for 
Modeling Explicit Seismic Common Cause Failures for 
Seismic Multi-unit Probabilistic Safety Assessment, Nuclear 
Engineering and Technology, 52 2238–2249, 2020. 
[2] R.J. Budnitz, G.S. Hardy, D.L. Moore, M.K. Ravindra, 
Correlation of Seismic Performance in Similar SSCs 
(Structures, Systems, and Components, vol. 7237, NUREG/CR, 
2017. 
[3] U.S. Moon, W.S. Jung, A Quantification Method using 
Monte Carlo Sampling for the Seismic Probabilistic Safety 
Assessment Model of Nuclear Power Plants with Correlated 
Seismic Failures, KNS Spring, 2024. 
[4] J.W. Reed, R.P. Kennedy, Methodology for Developing 
Seismic Fragilities Report, TR-103959, Electric Power Study 
Institute, Palo Alto, CA, 1994. 
 
 
 


