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1. Introduction 

 
Rayleigh-Bénard Convection (RBC) is a convective 

phenomenon that occurs when a temperature difference 

is applied between the lower and upper boundaries, with 

the lower boundary being hotter than the upper boundary. 

This convection plays a crucial role in both natural and 

industrial processes, significantly affecting energy 

efficiency and system stability through heat transfer. For 

example, controlling RBC is essential in atmospheric 

circulation on Earth, ocean currents, heat transfer in 

chemical processes, and cooling systems for electronic 

devices. In the nuclear power plant, heat control is 

critical to ensure the safety and efficiency of operations 

during normal conditions, transients, and accident 

scenarios. 

 

The goal of RBC control is not only to suppress or 

regulate the unstable convection occurring within the 

system to achieve the desired heat transfer characteristics 

but also to explore the nature of RBC. In this study, the 

primary objective is to suppress heat transfer by 

minimizing the Nusselt number, a dimensionless number 

that measures the amount of heat transferred by 

convection that indicates effective suppression of 

convection. However, the inherent unstable and chaotic 

nature of RBC makes control extremely challenging. 

Even small control or observation delays can make the 

system uncontrollable (Beintema et al., 2020 [1]). Due to 

these uncertainties and chaotic characteristics, traditional 

linear control methods have limitations, necessitating 

new approaches for effective control. 

 

Beintema et al. (2020) introduced reinforcement 

learning for RBC control, demonstrating superior 

performance compared to traditional linear approaches. 

Vignon et al. (2023) [2] showed that using Multi-Agent 

Reinforcement Learning (MARL) can enhance control 

performance, although this method is complex and time-

consuming. Recent attempts have also been made to 

improve performance by incorporating techniques such 

as Group Invariant Networks and Positional Encoding. 

However, this study integrates the transformer network, 

which has recently gained prominence in various fields 

[3], into the Actor-Critic structure, achieving more 

efficient and faster control using a Single-Agent 

Reinforcement Learning (SARL) with simple data 

augmentation. Transformers, originally successful in 

natural language processing, excel in handling complex 

correlations. 

 

In the study, to suppress convection in the RBC system 

by minimizing the Nusselt number, a reinforcement 

learning technique is used. Specifically, a method is 

developed to reduce the amount of heat transferred to the 

upper boundary by controlling the temperature 

distribution of the lower boundary. The Proximal Policy 

Optimization (PPO) algorithm [4] is employed, and the 

attention mechanism [5] is incorporated into the Actor-

Critic network structure, resulting in faster and more 

efficient learning compared to traditional neural 

network-based methods. The findings of this study 

provide important insights into the development of 

autonomous operation and digital twin technology in the 

nuclear industry through thermal hydraulic system 

control. 

 

2. Methods and Results 

 

2.1 Problem Definition 

 

2.1.1 Concept of Rayleigh-Bénard Convection (RBC) 

 

RBC is a thermal convection phenomenon that occurs 

when a temperature difference between the lower and 

upper boundaries exists. When the lower boundary is 

hotter, the resulting buoyancy effect causes the fluid to 

rise, cool near the upper boundary, and then descend, 

resulting in a circulation pattern. This circulation forms 

unstable convection patterns, which significantly affect 

heat transfer efficiency. The Non-dimensionalized 

governing equations of RBC are as follows: 

 

- Continuity 
∇ ⋅ 𝑢 = 0 (1) 

 

 

- Momentum 

∂𝑢

∂𝑡
+ (𝑢 ⋅ ∇)𝑢 = −∇𝑝 +√

𝑃𝑟

𝑅𝑎
∇2𝑢 + 𝑇𝑗 (2) 

 

- Energy 
∂𝑇

∂𝑡
+ 𝑢 ⋅ ∇𝑇 =

1

√𝑅𝑎𝑃𝑟
∇2𝑇 (3) 
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Fig. 1 shows the temporal evolution of temperature 

and velocity fields between two boundaries from 10 

seconds to 300 seconds. 

 

 
Fig. 1. Temporal evolution of temperature and velocity fields 

in the baseline RBC. 

 

2.1.2 Definition of the Control Problem 

 

In this study, to control the temperature of the lower 

boundary, the boundary is divided into 10 segments, and 

the temperature of each segment is chosen by the actions 

of the reinforcement learning agent. However, the 

temperature of the upper boundary is fixed, and the 

average temperature of the lower boundary is maintained 

constant. The agent learns to adjust the temperature of 

each segment to minimize heat transfer across the entire 

system. 

 

2.1.3 Nusselt Number and Control Objectives 

 

The Nusselt number is a dimensionless indicator of 

heat transfer within the system, used to evaluate heat 

transfer efficiency. A higher value indicates that more 

heat is being transferred by convection, and the control 

objective is to minimize this value to suppress 

convection. Specifically, the instantaneous Nusselt 

number is defined as follows, which is a function of heat 

flux 𝑞(𝑡): 
 

𝑁𝑢inst =
𝑞(𝑡)

κ(𝑇𝐻 − 𝑇𝐶)/𝐻
(4) 

 

 

 

 

 

 

 

2.2 Simulation Setup and Environment 

 

2.2.1 Simulation Environment Setup 

 

The simulations were performed using the Python-

based open-source numerical analysis package shenfun 

[6], which models the 2D RBC system and computes the 

convection between two boundaries. The temperature of 

the lower boundary is divided into 10 segments and 

adjusted based on the agent actions, while the effects of 

these temperature changes on the Nusselt number across 

the entire system are evaluated. The example of 

temperature distribution is shown in Fig. 2. 

 

 
Fig. 2. Example of temperature distribution on the bottom 

boundary. 

 

 

2.2.2 Definition of Simulation Parameters 

 

Key parameters used in the simulation include the 

Rayleigh number, Prandtl number, grid size, and time 

step. The Rayleigh number indicates the strength of 

convection, while the Prandtl number represents the ratio 

of fluid viscosity to thermal diffusivity. The grid size 

determines the resolution of the simulation, and the time 

step affects the accuracy and computation speed of the 

simulation. The key variables in the simulation are 

summarized in the following table: 

 

Table I: Parameters of the Simulation 

Parameter Value 

Domain size 𝐿 × 𝐻 2𝜋 × 2 

Galerkin modes 96 × 64 

Time step (sec) 0.02 

Pr 0.7 

Ra 104 

Thermal expansion coefficient, 𝛽  0.0015 

Action scaling factor, C 0.75 

Number of observation probes 8 × 32 

Number of CFD episodes 350 

Number of action steps per episode 200 

Number of control segments, N 10 

Baseline duration (sec) 300 

Action duration (sec) 1.5 

Episode duration (sec) 300 
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2.3 Reinforcement Learning Framework 

 

2.3.1 Reinforcement Learning Concept and PPO 

Algorithm 

 

Reinforcement learning is a machine learning method 

where an agent learns to take optimal actions in a given 

environment to maximize rewards (Fig. 3). In this study, 

the PPO algorithm is used to develop a reinforcement 

learning-based temperature control strategy. PPO is a 

policy-based reinforcement learning algorithm that 

optimizes the agent's action policy to maximize rewards. 

The algorithm uses a clipping technique to limit policy 

changes, ensuring stable learning and high performance. 

 

 
Fig. 3. Concept of Reinforcement Learning. [7] 

 

Table II: Pseudo code of PPO Algorithm [4] 

 
 

2.3.2 Actor-Critic Structure and Transformer Network 

 

In reinforcement learning, the Actor-Critic structure 

separates the policy (Actor) and value function (Critic) 

for learning. In the PPO algorithm, the Actor determines 

which action to take given a state, while the Critic 

evaluates the value of that state. 

 

The Actor-Critic network used in this study is based 

on a transformer structure with multiple encoder blocks, 

designed to more effectively learn the (state-action) and 

(state-value) relationships in reinforcement learning. 

Unlike traditional sequential neural networks, the 

transformer model utilizes the self-attention mechanism 

to effectively learn the complex heat transfer patterns in 

the RBC system. This contributes to the agent learning 

more sophisticated control strategies. Transformers use 

multi-head self-attention to integrate various 

perspectives for each state, then learn to select the 

optimal action. 

 

The network architecture used in this study is shown 

in Fig. 4. It consists of embeddings of size 128, with 4 

heads and 4 transformer encoder blocks. The input state, 

flattened into one dimension, is added to positional 

embeddings and then passes through the multi-head 

attention layers and feed-forward layers of the 

transformer blocks four times. This network has 

approximately 500,000 parameters, making it more 

parameter-efficient than the conventional network with 

two hidden layers of size 512, which has about 660,000 

parameters. 

 

Additionally, data augmentation was performed by 

applying translations and y-axis symmetry to both the 

state and actions during policy training, taking advantage 

of the periodicity and symmetry of the simulation 

domain. 

 

 
Fig. 4. Structure of transformer networks for actor-critic. 

 

2.4 Results 

 

In Fig. 5, the green line represents the performance of 

the reinforcement learning algorithm developed in this 

study (PPO using a transformer architecture as an actor-

critic network), while the blue and orange lines show the 

results of the PPO with SARL and MARL algorithms, 

respectively. The dashed lines represent the final Nusselt 

number of each method per episode, and the bold lines 

represent the 25-episode moving average of the final 

Nusselt number per episode.  

 

The initial Nusselt number for all algorithms starts at 

approximately 2.6. During the initial episodes, each 

algorithm adapts to the environment and learns to reduce 

the Nusselt number. All three cases successfully reduce 

the Nusselt number in the early stages, but the 

transformer network proposed in this study consistently 

and rapidly achieves further reductions. While the 

highest performance was observed in the MARL case, 

the transformer case achieved high performance more 

quickly and provided more stable control with lower 

variance compared to other cases. This indicates that the 

transformer network was able to effectively learn the 
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complex correlations of convection patterns, leading to a 

more stable control strategy.  

 

In detail, as shown in Fig. 6, the TR case shows that in 

most episodes, the Nusselt number decreases gradually 

at first, followed by a sharp decline after 150 seconds, 

ultimately stabilizing around 2.1. This suggests that the 

transformer network effectively controls the convection 

patterns. On the other hand, in the MARL case, a 

significant decrease in the Nusselt number is observed 

only in the 210th and 240th episodes, with little change 

in other episodes. 

 

Fig. 7 shows the temporal evolution of the temperature 

and velocity fields in the transformer case from 350 

seconds to 600 seconds. In the final state, as shown in the 

figure, the fluid stabilizes into a converged form, where 

the convection pattern merges into a single large cell. 

This indicates that the convection has transitioned from 

an unstable, multi-vortex structure to a single stable state.   

 

Compared with the previous MARL studies, the 

results show that although the final performance was 

slightly lower, the learning speed and efficiency 

provided significant advantages. This suggests that the 

method could be highly useful in fields such as the 

nuclear industry, where real-time control is critical. 

 

 
Fig. 5. Results of RBC-DRL cases. 

 

 
Fig. 6. Nu changes during episodes for each case (TR, 

MARL). 

 

 
Fig. 7. Temporal evolution of temperature and velocity field 

in the TR case episode 100. 

 

3. Conclusions 

 

This study proposed a reinforcement learning method 

for controlling convection in the RBC system, aimed at 

minimizing the Nusselt number. Unlike previous studies 

that primarily focused on MARL for improving control 

performance, this study significantly enhanced learning 

speed and efficiency by incorporating a transformer 

network into the SARL framework. The key contribution 

of this research lies in the combination of a state-of-the-

art network with the PPO algorithm, enabling faster and 

more efficient convection control compared to traditional 
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methods using simple neural networks. 

 

The Actor-Critic reinforcement learning algorithm 

incorporating the transformer network demonstrated 

excellent performance in controlling complex 

convection patterns. The proposed temperature control 

method effectively reduced the Nusselt number 

compared to existing SARL methods, indicating 

improved flow control performance. Although the final 

performance was somewhat lower than MARL results, 

the proposed method achieved high performance much 

more quickly, with simpler implementation and faster 

learning, making it more applicable in industries where 

real-time control is essential. 

 

The reinforcement learning-based convection control 

method developed in this study has potential applications 

in autonomous operation systems and accident 

management systems within the nuclear industry. For 

example, it could enhance plant stability by controlling 

heat transfer in the reactor cooling system or effectively 

managing convection around fuel rods. Additionally, this 

method shows potential for application in real-time 

monitoring and control of complex physical phenomena 

in actual systems through digital twin technology. 

 

This research focused on confirming the feasibility of 

combining reinforcement learning with transformer 

networks for thermal hydraulic control. Future research 

could expand in the following directions: 

 

- Comparison and enhancement of reinforcement 

learning algorithms: Testing different algorithms to 

further improve control performance or exploring 

hyperparameter tuning for better outcomes 

- Application in complex fluid environments: 

Exploring the applicability in more complex 

environments such as turbulence control or three-

dimensional flow systems 

- Implementation of real-time control systems: 

Implementing systems capable of real-time control to 

evaluate practical applicability in industrial settings 

 

This study identified new possibilities for 

reinforcement learning-based heat transfer control by 

incorporating the transformer architecture, which offers 

significant advantages due to its powerful performance 

across various domains. 
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