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1. Introduction 

 

Operating the Sodium Fast Reactor (SFR) at 

temperatures of 500 °C or higher introduces significant 

thermal stress due to substantial temperature 

fluctuations within the reactor structure. The primary 

failure modes identified in these conditions include 

ratcheting deformation and a combination of creep and 

fatigue damage resulting from repeated thermal loading. 

To address these challenges, the design of the SFR 

prioritizes structural integrity, assessing failure modes 

such as creep fatigue, inelastic strain, and buckling. This 

study highlights the critical need for regular in-operation 

inspections throughout the lifespan of an SFR to ensure 

its structural integrity and safety. 

The reactor container is particularly vital, 

necessitating the development of a monitoring and 

diagnostic system to detect physical deformations 

caused by thermal ratcheting and crack defects arising 

from creep fatigue. However, the use of liquid sodium 

as a coolant presents unique challenges, as it renders 

conventional optical inspection technologies, commonly 

employed in light water reactors, impractical [1, 2]. The 

prolonged use of sodium coolant also demands 

materials with high corrosion resistance, complicating 

ultrasonic evaluations of resulting welds [3]. 

Furthermore, sodium’s opacity precludes visual 

inspections, endoscopic evaluations, or television 

camera assessments of surfaces submerged in sodium, 

necessitating reliance on ultrasonic methods for in-

service inspections of reactor vessel internals. 

For external assessments of the SFR, both acoustic 

bulk waves and guided waves can be employed. In the 

bulk wave approach, ultrasonic probes are placed along 

the main vessel's wall to generate bulk waves that travel 

through the wall and penetrate the vessel. This method 

enables telemetric evaluations of internal components 

and may support Non Destructive Testing (NDT) 

procedures, mimicking the effectiveness of probes 

located within the reactor. However, energy dissipation 

at each interface may reduce the signal-to-noise ratio, 

complicating measurement accuracy. Therefore, 

enhancing defect identification precision through 

techniques such as super resolution or noise filtration 

during ultrasonic image acquisition is crucial. 

Significant research efforts have been directed toward 

developing ultrasonic techniques capable of 

visualization in opaque environments. Despite these 

advancements, the degradation of data quality at 

elevated temperatures remains a concern, potentially 

leading to inaccuracies in detecting structural 

deformations. To address these issues, former study 

proposed the application of an Artificial Intelligence 

(AI) model for monitoring defects in the internal 

structures of the SFR [4, 5]. In these studies, the Yolov7 

AI model developed for object detection was applied to 

images detected by an ultrasonic device to check for 

defects in the internal structures of SFR. To improve the 

object detection performance, the Enhanced Super 

Resolution Generative Adversarial Network (ESR-

GAN) deep learning AI model for super-resolution of 

images and the Sobel noise filtering algorithm were 

applied to conduct tests. Therefore, we developed for a 

defect detection monitoring system for SFR's internal 

structures by combining two AI models and noise 

filtering algorithms. 

In this study, we developed a web-based integrated 

monitoring system that integrates all the previously 

developed models to perform real-time defect detection 

and data management. The system light-weight the 

model by uploading it to the triton inference server in 

the form of TensorRT to improve AI model serving and 

speed, and showed the benefits of Application 

Programming Interface (API) conversion and speed 

improvement of AI models by applying the inference 

server. In addition, the system changed to the Yolov8 

model, which is an upgrade from the existing object 

detection model Yolov7, and confirmed the 

improvement in inference speed compared to the 

previous one. 

 

2. Methodology and system design 

 

2.1. Defect detection with artificial intelligence model 

 

Ultrasound scanning is an effective and safe method 

for inspecting concealed or hard-to-reach metallic 
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structures, making it particularly valuable for defect 

detection. In this context, C-scan technology has been 

specifically developed to facilitate the examination of 

sodium fast reactor (SFR) components, providing real-

time, high-resolution images that significantly improve 

the efficiency and accuracy of the inspection process. 

The C-scan system is optimized for reliable operation in 

high-temperature sodium environments. For our study, 

we initially acquired C-scan data in water at room 

temperature (25 °C) using an ultrasonic guide tube 

sensor. 

To enhance our dataset, we integrated the collected 

C-scan data with images generated through image 

augmentation techniques. While this approach yielded 

approximately 80% accuracy, the use of distortion 

techniques in the augmented data introduced critical 

challenges in defect detection. To address these issues, 

we employed two methodologies: deep learning super-

resolution and a filtering algorithm for image data, both 

aimed at improving the object detection performance of 

the AI model by enhancing data quality. 

The ESR-GAN model, which features a network 

architecture incorporating skip connections in the 

convolutional layers and generator network, was utilized 

to improve performance. Additionally, we implemented 

Sobel image filtering algorithm to reduce image noise 

and further enhance image quality. These processes are 

shown in Fig. 1. 

 

 
Fig. 1. Process of defect detection for SFR's invisible 

environment of internal structure 

 

2.2. Integrated monitoring system 

 

As we changed AI model from Yolov7 used in our 

previous research to Yolov8, AI model became 

increasingly large and slow to infer. For this reason, 

Yolov8 model can benefit when Graphics Processing 

Unit (GPU) uses in terms of performance, but the cost is 

very high. Therefore, in our research, light-weight of the 

model is conducted necessary in order to run efficiently. 

For light-weight the AI model, it is usually to convert 

the model trained with PyTorch or TensorFlow to 

ONNX or TensorRT format. However, it is needed to 

write separate inference code for using the converted 

model, and it is hard to write the inference code in C++ 

for improving performance. Therefore, we used triton 

inference server. 

The triton inference server is an open-source software 

optimized for high-performance inference and provides 

inference capabilities for various model formats, 

especially TensorRT. So it can be inferred AI models 

faster than loading them from a traditional local or hub. 

TensorRT is a model optimization engine that can help 

improve deep learning services by optimizing trained 

deep learning models to increase inference speed by 

several orders of magnitude to several orders of 

magnitude. By converting pre-trained AI models to 

TensorRT engine and utilizing it, you can get good 

inference performance. 

In this project, we applied two methodologies; triton 

inference server and TensorRT. And to the pre-trained 

Yolov8, it is implemented the API to test the function 

using WebUI shown as Fig. 2. 

 

 
Fig. 2. WebUI of integrated monitoring system 

 

3. Experimental setup and results 

 

We evaluated the defect detection performance 

between Yolov7 and Yolov8 using the integrated 

monitoring system by inputting the C-scan data 

previously mentioned. The input C-scan data is a sample 

of arbitrary generated defects, and the evaluation was 

performed by extending the sample to data with various 

types of defects using data augmentation techniques. 

The Fig. 3 is defect detection example of C-scan image 

data from defected sample and augmented data used it. 

 

 
Fig. 3. Example of defect detection using that arbitrary 

generated defect data (a) and augmented data (b) 

 
And to assess defect detection, the effectiveness of 

the AI model was measured by calculating confidence 
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scores, which are crucial for determining object 

detection accuracy. A comparative analysis was 

performed to evaluate the model's performance between 

Yolov7 and Yolov8, considering the application of 

super-resolution and noise filtering algorithms. The 

resulting performance metrics, presented in Table I, 

offer a detailed depiction of the model's capabilities 

across various defect data shapes. 

 
Table I: Comparison of defect detection performance 

Confidence score for evaluating defect detection 

AI 

Model 
Optional 

C-scan data 

Line shape Augmented 

Yolov7 

n/a 0.57 0.86 

With ESR-GAN 

and Sobel 

algorithm 

0.70 0.87 

Yolov8 

n/a 0.73 0.87 

With ESR-GAN 

and Sobel 

algorithm 

0.89 0.90 

 

To compare the defect detection outcomes between 

Yolov7 and Yolov8, with and without the application of 

ESR-GAN and the Sobel algorithm, we presented the 

defect detection accuracy as confidence scores. The 

results indicated that Yolov8 outperformed Yolov7 

regarding improved defect detection accuracy, and 

when super-resolution and noise filtering techniques 

were better than it is not applied. 

 

4. Conclusion 

 

In Table Ⅰ, the evaluation outcomes derived from the 

test dataset indicate that Yolov8 demonstrates superior 

defect detection capabilities compared to Yolov7, as 

reflected in the varying confidence scores. These scores 

represent the likelihood that a given component is 

defective; however, their numerical values alone do not 

provide sufficient accuracy for definitive defect 

classification. In contrast, utilizing Yolov8 for defect 

detection after applying super-resolution and noise 

filtering on the same datasets results in confidence 

scores that increase by up to 21.9%. These findings 

highlight the critical role of super-resolution and noise 

filtering in enhancing the effectiveness of Yolov8 for 

defect detection, making these techniques essential 

components of image processing and analysis protocols. 

In the near future, we will conduct tests for defect 

detection using C-scan data obtained from liquefied 

sodium. It is anticipated that our developed model can 

effectively detect defects in the internal structure of SFR, 

which operate within an invisible environment. 

Additionally, we plan to extend our research to include 

the assessment of samples with replicated defects in an 

opaque liquid sodium environment. This iterative 

process of validation and optimization will enhance our 

integrated monitoring system, allowing it to serve as 

effective defect detection for SFR applications. 
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