

Analysis of Energy Spectrum of a Small X-ray Tube Operating at Pulsed Mode

SeongHun Jeon^a, YeongHwan Choi^a, MuHyeop Cha^a, SeHoon Gihm^b, HyeonGu Cho^b, HyunJin Kim^b and Kyoung-Jae Chung^a* ^aDepartment of Nuclear Engineering, Seoul National University, Seoul, Republic of Korea ^baweXome Ray Inc, Anyang, Gyeonggi-Do 14056, Republic of Korea

on source lab

Introduction

Carbon Nanotube(CNT) X-ray tube

- CNT is a tube which emits electron due to high electric field[1].
- Emitted electrons are accelerated at high speed and collide with the target and generates X-rays.

Results & Discussion

Applied Voltage and Current at Load

- Before TTL signal is applied, voltage oscillation phenomenon is considered to occur during transformer charging.
- Rise Time was about 800 ns, and maximum voltage applied to the CNT tube was about 9.5, 10.5, 11.5, 13 kV respectively.
- Maximum current for each case was 0.7, 0.8, 0.9, 1.3 A respectively
- After about 1.2 μs, the current shows a tendency to oscillate.
- It is judged that result of the virtual cathode effect occurs when voltage reaches around 7 kV which discharge begins.

Applied Load Voltage	Applied Load Current

Low energy X-ray source application

• Radiographic scan of human body, non-destructive testing[2].

Necessity of operating pulse mode

- When applied DC voltage, tube can be damaged due to the temperature rise and Large current application.
- Short pulse improves time resolution in medical imaging field.
- In this study, X-ray spectrum was analyzed for various operating voltages.

Experimental Setup

Development of X-ray pulse generator

- Pulse generator consists of a trigger circuit and main circuit.
- Transformer with 1:70 ratio is used to generate high voltage pulses repetitively.
 - Frequency : 0.1 kHz
 - Duty:0.1%

Energy spectrum of X-ray tube by applied voltage

- X-ray spectrum broadened as the applied voltage increased from 9.5 to 11.5 kV range.
- It appeared characteristic X-ray of tungsten around 8.5 keV.
- It consistent with the usual bremsstrahlung phenomenon, which produces stronger X-ray emission at higher voltages in X-ray tube[4].

 $L\alpha_2$

8.335

 $L\alpha_1$

8.397

→ Inductive kickback effect (HV, short Pulse)

Detection of X-ray spectrum

- X-ray tube composed of CNT cathode and tungsten anode.
- The emitted electrons interact with the tungsten target, producing bremsstrahlung or characteristic X-rays.
- X-ray energy spectrum was measured using fast silicon drift detector(XR-1000SDD).
- Measurement distance from the X-ray tube is set to 0.8 m to minimize the pile-up phenomenon in the detector.
- Fast SDD was calibrated using Fe-55 source, which are commonly used for

Conclusion & Future work

- In this study, about 10 keV X-ray spectrum was investigated with CNT tube. CNT tube operating at pulsed mode offer advantages for high voltage application.
- Electron emission dynamics of diode structures were investigated.
- It was observed phenomenon presumed to virtual cathode effect. In the future, we will develop high voltage pulse generator using solidstate based switch.

Acknowledgement

This work was supported by the Research of Electron Beam and X-ray Emission Characteristics of CNT-Based Cold Cathode Tube founded by aweXome Ray, Inc & National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2020M2D1A1064206) and National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (No. RS-2022-00154676 and No. RS-2023-00281276).

low-energy calibration[3].

Reference

[1] H. Sugie, M.Tanemura, V. Filip et al, "Carbon nanotubes as electron source in an x-ray tube", Appl. Phys. Lett. 78, 2578-2580, 2001

[2] Kastner, J., Heinzl, C, "X-ray Computed Tomography for Non-destructive Testing and Materials Characterization", Advances in Computer Vision and Pattern Recognition, 227–250, 2015. [3] Matteo Biassoni, Matteo Gugiatti, et al. "Electron spectrometry with Silicon drift detectors: a GEANT4 based method for detector response reconstruction," The European Physical Journal Plus, Volume 136, article number 125, 2021.

[4] Marca C. Silva, Silvio B. Herdade, et al. "Determination of the voltage applied to x-ray tubes from the bremsstrahlung spectrum obtained with a silicon PIN photodiode", Medical Physics, 27(11):2617-23, 2000

KNS 2024 Fall Conference 2024.10.24 - 2024.10.26

