Preliminary Analysis of Boron-free Operation Small Modular Reactor using McCARD and DeCART2D

Oct. 24, 2024

Young Beom Shon*, Jeong Woo Park, Chiheon Kim, and Ho Jin Park

Monte Carlo Reactor Physic Lab.

Department of Nuclear Engineering Kyung Hee Univ.

Contents

01 Introduction

- **02 Design & Specifications**
- **03** Numerical Results
- 04 Conclusions & Future work

05 References

- Background
 - Boron-free Operation Small Modular Reactors, such as the innovative SMR (i-SMR), aims for extended operational cycle, and flexible thermal power range and Soluble Boron-free (SBF) conditions.
 - SBF conditions enhances system integrity by reducing liquid waste, simplifying chemical control, and lowering the risk of boron dilution accidents.
 - To achieve SBF conditions, different operating conditions (e.g. enriched gadolinium) than commercial PWRs are required. This means that a core analysis code system suitable for SBF conditions is required.
 - To establish a new high-fidelity nuclear core analysis code system for SBF conditions, the <u>errors in an existing core design analysis code system</u> must be quantitatively evaluated.

Introduction

• Target SBF system

Our goal is to perform and quantify the errors for newly-developing i-SMR, but the specifications of i-SMR have not been finalized. Accordingly, old data from the paper of J.S. Kim^{[1][2]} was used in this study.

• Target core design code

Deterministic 2-Step procedure core analysis code system is being performed utilizing two libraries for the target SBF system by *DeCART2D/MASTER*, which are developed by KAERI.

Reference

- ✓ *McCARD* Monte-Carlo (MC) calculations were performed to provide the reference solutions for V&V calculations.
- ✓ Based on the results for the target SBF system, the error was evaluated through comparison and verification in the McCARD and MASTER codes.

Computational Code

- McCARD^[3]
 - ✓ Developed by Seoul National University
 - ✓ Neutron/Photon Monte-Carlo transport analysis
 - ✓ Can handle Continuous cross-section library
 - ✓ Used ENDF/B-VII.1
 - ✓ Used as design code for *JRTR* and *KJRR*
- DeCART2D^[4]/MASTER^[5]
 - ✓ Developed by KAERI
 - ✓ 2-Step procedure core analysis code system
 - DeCART2D: MOC Calc. (Lattice code)
 - MASTER-4.0: Nodal Calc. (Whole Core analysis code)
 - ✓ ENDF/B-VII.1 based on Library (47-Groups)
 - ✓ Used as design analysis for SMART, ARARx

DeCART2D/MASTER 2-Step procedure code system

- Core Specifications of Boron-free Operation SMR
 - Extended operational cycle (24 months) + <u>SBF Condition</u>
 - \checkmark Need a lot of burnable absorber for excess reactivity control.
 - \checkmark The stainless steel was used as a reflector.

		A01	A01	A02	A01	A01		
	A01	A01	A02	A05	A02	A01	A01	
A01	A01	A03	A03	A05	A03	A03	A01	A01
A01	A02	A03	A04	A05	A04	A03	A02	A01
A02	A05	A05	A05	A03	A05	A05	A05	A02
A01	A02	A03	A04	A05	A04	A03	A02	A01
A01	A01	A03	A03	A05	A03	A03	A01	A01
	A01	A01	A02	A05	A02	A01	A01	
		A01	A01	A02	A01	A01		

Fig. 1. Configuration of the core models

Table. I. Core Specifications

Parameters	Value
Power	$540 \text{ MW}_{\text{th}}$
Number of FA	69
Refueling cycle	24 months
Batch	2 batches
Inlet coolant	548.15 K
Outlet coolant	598.15 K
Boron concentration	0 ppm
Active core height	240 cm

- Enriched gadolinium in Burnable Absorber
 - Excess reactivity control
 - ✓ Commercial PWR → Soluble Boron + Burnable Absorber Rods + Control Rods
 - ✓ Boron-free SMR \rightarrow <u>Burnable Absorber Rods + Control Rods</u>
 - Enriched gadolinium are required due to the thermal conductivity and content of UO_2
 - The combined abundance of ¹⁵⁵Gd and ¹⁵⁷Gd, which have high absorption crosssections, was enriched to 50% and 70%, respectively.

Isotope	Abundance (%)			
¹⁵² Gd	0.20	0.14	0.09	
¹⁵⁴ Gd	2.18	1.57	0.94	
¹⁵⁵ Gd	14.80	24.30	34.02	
¹⁵⁶ Gd	20.47	14.72	8.83	
¹⁵⁷ Gd	15.65	25.70	35.98	
¹⁵⁸ Gd	24.84	17.86	10.71	
¹⁶⁰ Gd	21.86	15.72	9.43	
Sum (= 155 Gd + 157 Gd)	30.45 (Nat.)	50.00	70.00	

Table. II. Abundance of natural and enriched Gadolinium isotopes

Transactions of the Korean Nuclear Society Autumn Meeting, 2024

- FA Specifications of Boron-free Operation SMR
 - FA Type (Westing House) \rightarrow Control Rod worth
 - Additionally, high-concentration, low-content, gadolinia was also loaded. Table. III. FA Specifications

- Improvement of Library Generation Code System for DeCART2D
 - DeCART2D cross-section library for lattice code contains nuclide-wise nuclear reaction cross section and burnup dependent data.
 - Recently, Kim and Park applied the new cross section library correction procedure into the KAERI library generation code system.

ENDF/B

NJOY

BROADR

Output

MERIT

RI Table

CORRIT

Corrected

RI Table

GROUPR

Output

GREDIT

Multi-group XS

CORRXS

Corrected

Mutli-group XS

LIBGEN/

UBFORM

DeCART Library

McCARD

SUBDATA

Subgroup data

Fig. 3. Library generation system

DeCART2I

CORRA

Correction

factor data

- ✓ *CORRXS* : Multi-group Cross Section Correction
- ✓ *CORRIT* : Resonance Integral Table Correction

- Correction factors based on MC
 - ✓ Absorption, nu-fission cross section
 - ✓ Scattering Matrix

$$f_{x,g}^{n+1} = \frac{\sigma_{x,g}^{MC} \phi_{x,g}^{MC}}{\sigma_{x,g}^{DE,n} \phi_{x,g}^{DE,n}}$$
$$\sigma_{x,g}^{DE,n+1} = f_{x,g}^{n+1} \sigma_{x,g}^{DE,n}$$

 $\ll \sigma_{x,g}^{MC}$ and $\sigma_{x,g}^{DE,n} : g^{th}$ energy group cross section for reaction type *x* by McCARD and DeCART2D. $\ll \phi_{x,g}^{MC}$ and $\phi_{x,g}^{DE,n} : g^{th}$ energy group flux produced by McCARD and DeCART2D.

Calculation Conditions

- Based on ENDF/B-VII.1 nuclear data library
- Temperature condition: HFP
 - ✓ Fuel: 900 K, Clad: 600 K, Moderator: 600 K
- Boron concentration: 0 ppm (SBF)

McCARD calculation conditions

Case	Histories / Active cycles / Inactive cycles	Stochastic uncertainties (= 1σ)
FA	50000 / 500 / 200	< 14 pcm
2D core	50000 / 1500 / 1000	< 13 pcm
Depletion	20000 / 150 / 100	< 40 pcm

• Cross-Section Library for DeCART2D

Library name Library code		Note	
Old Library	PV01-CR08	Existing library for analysis commercial PWR - U ²³⁵ , U ²³⁸ corrected	
<i>New Library</i> PV05-iSMR-CR04		Preliminary library for analysis Boron-free SMR - U ²³⁵ , U ²³⁸ , Gd ¹⁵⁴ , Gd ¹⁵⁵ , Gd ¹⁵⁶ , Gd ¹⁵⁷ , Gd ¹⁵⁸ , Gd ¹⁶⁰ , H ¹ corrected	

- Boron-free Operation SMR Optimized Library Generation
 - Large errors in group-wise reaction rates from uncorrected DeCART2D library
 - New DeCART2D library generation by multi-round corrections (improved system)
 - Corrected U²³⁵, U²³⁸, Gd¹⁵⁴, Gd¹⁵⁵, Gd¹⁵⁶, Gd¹⁵⁷, Gd¹⁵⁸, Gd¹⁶⁰, H¹ isotopes

• FA Benchmark

- 5 FA benchmark problems DeCART2D and McCARD (*reference*).
 - ✓ Old Library : Uncertainties in k_{eff} are less than 150 pcm.
 - ✓ New Library : Uncertainties in k_{eff} are less than 50 pcm. → improvement of accuracy

• 2D Core Benchmark

- 2D core benchmark problem for the SBF system were performed by DeCART2D and McCARD.
 - ✓ Old Library : Uncertainties in k_{eff} are about 400 pcm.
 - ✓ New Library : Uncertainties in k_{eff} are about 20 pcm. → improvement of accuracy

J

2D Core Benchmark

- RMSE (maximum error) in FA-wise power distribution
 - Old Library : 1.08% (1.89%) \checkmark
 - New Library : 0.47% (0.90%) \checkmark

Е

F G Η

	A03	A05	A05	A05	A02	Assembly
5	-0.52%	-0.76%	-0.97%	-0.59%	1.19%	Old ¹⁾
	-0.27%	-0.55%	-0.61%	-0.28%	0.42%	New ²⁾
	A05	A04	A03	A02	A01	110 W
6	-0.76%	-0.74%	-0.94%	-0.37%	1.30%	
	-0.55%	-0.41%	-0.44%	0.00%	0.44%	RMSE
	A05	A03	A03	A01	A01	1.08%
7	-0.97%	-0.94%	-0.36%	0.41%	1.89%	0.47%
	-0.61%	-0.44%	0.17%	0.42%	0.57%	0.4770
	A05	A02	A01	A01		Max.
8	-0.59%	-0.37%	0.41%	1.74%		1.89%
	-0.28%	0.00%	0.42%	0.90%		0.90%
	A02	A01	A01			0.7070
9	1.19%	1.30%	1.89%			
	0.42%	0.44%	0.57%			1) PV01-CR08 li

Fig. 6. FA-wise power distribution by McCARD and DeCART2D

- brary
- 2) PV05-iSMR-CR04 library

- Reference Solution Generation for FA Depletion Problem
 - A03-type FA problem.
 - McCARD reference solutions : 98 DTS with QE/QI option.

Fig. 7. Differences in reactivity among McCARD burnup analyses with various options

• FA Depletion Problem

- RMSE(New Library) = 98 pcm < RMSE(Old Library) = 130 pcm
- Errors in reactivity after MOC may induce from the uncorrected actinide isotopes

• 3D Core calculation

- Compared KARMA/ASTRA results of the paper of J.S. Kim^{[1][2]}
- Similar *ASI* and *Fq*, but Large difference in *reactivity* between ASTRA and MASTER
 - ✓ Uncertain and unclear specification : cutback region, reflector, enrichments

04 Conclusions & Future works

04 Conclusions & Future works

Conclusions

- Preliminary analysis for Boron-free SMR has been successfully conducted using *DeCART2D/MASTER* 2-Step procedure code system.
- Reference solutions were generated by *McCARD* MC code.
- Generated new Boron-free SMR optimized DeCART2D library (*New library*) using the improved KAERI library generation code system.
- Summary of Results

Casa	ρ difference			
Case	Old	New		
A01	152	13		
A02	140	41		
A03, A04	139	45		
A05	146	1		
2D Core	399	17		

Power	Difference (%)		
distribution	Old	New	
RMSE	1.08	0.47	

D	Difference (pcm)		
Burnup	Old	New	
RMSE	130	98	

• The new Boron-free SMR optimized library shows better performance in estimating reactivity, power distributions.

04 Conclusions & Future works

• Future works

- In the near future, 3D Core multi-cycle analysis for up-to-date or finalized i-SMR core design by MASTER code will be conducted.
 - ✓ Core follow analysis
 - ✓ Comparison of nuclear design parameters
- The i-SMR optimized library will be generated, especially the cross sections for Pu and minor actinide isotopes will be corrected for the depletion analysis.

05 References

- [1] J. S. Kim, "Reactor core design with enriched gadolinia burnable absorbers for soluble Boron-Free operation in the innovative SMR", Nuclear Engineering and Design, 2024.
- [2] J. S. Kim, et al. "Applicability Evaluation of Enriched Gadolinium as a Burnable Absorber in Assembly Level for Boron-Free iSMR." In Transactions of the Korean Nuclear Society Spring Meeting, Jeju, Korea, May 19-20, 2022.
- [3] H. J. Shim et al., "McCARD: Monte Carlo Code for Advanced Reactor Design and Analysis," *Nucl. Eng. Technol.*, 44, pp.151-176, 2012.
- [4] J. Y. Cho, et al., "DeCART2D v1.1 User's Manual," KAERI/UM-40/2016, 2016.
- [5] J. Y. Cho, et al., "MASTER v4.0 User's Manual," KAERI/UM-41/2016, 2016
- [6] C. H. Kim, et al. "Preliminary Benchmarking of DeCART2D/MASTER Two-Step Core Design System for APR-1400 Benchmark using Improved Cross Section Library." Korean Nuclear Society Spring Meeting, Jeju, Korea, May 19-20, 2022.
- [7] H. J. Park, et al. "Monte Carlo Burnup and Its Uncertainty Propagation Analyses for VERA Depletion Benchmarks by McCARD," Nucl. Eng. Technol., 50, pp. 1043-1050, 2018.

Thank you!

