

Core Design Study for Soluble Boron-Free and Long-cycle Operation of Small Modular Reactor using Enriched Gadolinia

UNIST CORE Lab.

Chanwoo Kim, Kyeongwon Kim, Jinsu Park, Eun Jeong and Deokjung Lee*

2024.10.24 (Th)

KNS2024A

CONTACT

Ulsan National Institute of Science and Technology Address 50 UNIST-gil, Ulju-gun, Ulsan, 44919, Korea Tel. +82 52 217 0114 Web. www.unist.ac.kr Computational Reactor physics & Experiment lab Tel. +82 52 217 2940 Web, reactorcore.unist.ac.kr

Content

Introduction

- SMR, SBF, burnable absorbers, enriched gadolinia
- Computation code system
- Single pin-cell calculation
- Core design
 - Design parameter
 - Fuel assembly and core design

Numerical results

- Effective multiplication factor, k_{eff}
- Axial shape index, ASI
- Pin peaking factor, F_q
- Radial and axial power distribution
- Shutdown margin and reactivity coefficient calculation
- Conclusion
- Reference

Introduction

-Computation code system -Single pin-cell calculation

Introduction

- Small modular reactors(SMRs)
 - Carbon neutrality, safety and flexibility
- Soluble boron-free (SBF) operation
 - Elimination of the CVCS
 - Simplification of the reactor design
 - More negative MTC
 - Increased use of burnable absorbers and control rods
- Burnable absorbers (CSBA, CIMBA, and HIGA)
 - Thermal property issue
 - Manufacturing and regulatory challenges

→Enriched gadolinia

• Solution for SBF and long-cycle operation

UNIST CORE

Introduction

- Gadolinia (UO₂-Gd₂O₃)
 - Large thermal neutron absorption XS
 - Commercial nuclear power plants
 - High melting point (2,693 K)
 - Thermal property issue
 - Increasing content of Gd_2O_3

Computation code system developed by UNIST CORE

STREAM

- Neutron transport analysis code
- 2D lattice physics code
- Group constants generation
- Method of characteristics (MOC)

RAST-K

- Neutron diffusion analysis code
- Unified nodal method (UNM)
- Multi-group coarse mesh finite difference (CMFD) acceleration

Flowchart of STREAM/RAST-K 2.0 code system

Enriched gadolinia calculation with STREAM

Single pin-cell gadolinia calculation

- Gadolinia(Gd₂O₃) content is limited to 6-8 wt.% in commercial reactor
- Different enrichment levels were tested, with a maximum content of 8 wt.%

Comparison of k_{∞} for various gadolinia enrichment

UNIST CORE

Enriched + natural gadolinia calculation with STREAM

- Only enriched gadolinia
 - Difficult to control high excess reactivity at BOC
- Mix of enriched gadolinia and low-content natural gadolinia
 - Combined with 0.3 ~ 4 wt.% content of natural gadolinia

Comparison of k_∞ for various natural gadolinia contents

Core design

-Core design parameter -Fuel assembly design -Core design

Core design parameter

Parameter	Value
Thermal power	520MW _{th}
Number of FAs	69
Fuel enrichment	< 4.95 wt.% ²³⁵ U
Control rod material	AIC
Reflector material	Stainless steel
Active fuel height	240 cm
Total loading	21.613 MTU
Multiplication factor (k _{eff})	$1.005 < k_{eff} < 1.015$
3D pin peaking factor (F _g)	$F_{q} < 2.5$
Axial Shape Index (ASI)	-0.4 < ASI < +0.4
Isothermal temperature coefficient	ITC < 0 pcm/°C
Shutdown margin	SDM > 3000 pcm
Target cycle length	~30 months

SDM limit was determined based on the measurement of the measurement of the measurement of the second se

- Geometries (17 × 17 square-type assemblies)
- Uranium enrichment (< 5 wt.%)
- Active core height of 200 cm

Fuel assembly design

- Use of many CRs to manage excess reactivity
 - Power concentration at the bottom of the core
 - Leading to higher ASI and axial asymmetry
- Maximizing the use of BA rods to manage excess reactivity
 - Difference of maximum and minimum within 5,000 pcm

Fuel type	A	В	С	D	E
²³⁵ U enrichment [wt.%]	4	4	4	4.5	4.95
Number of gadolinia pin (Enriched + Natural)	28	24+4	28	20+4	20
^{155,157} Gd enrichment [wt.%]	70	70	70	50	70
Content of natural gadolinia [wt.%]	-	4	-	2	-
²³⁵ U in UO ₂ -Gd ₂ O ₃ [wt.%]	1.8	1.8	1.8	1.8	1.8

Fuel assembly design

Core design

- Homogeneous axial composition
- Fuel with a multiplication factor less than unity was used in the center
- Higher ²³⁵U enrichment was used in peripheral regions
- Ag-In-Cd is used in regulating banks to minimize the impact of control rod burnup
- B₄C is used in shutdown banks to enhance the shutdown margin

Loading pattern and control rod pattern

Fuel type	A	В	С	D	E
²³⁵ U enrichment [wt.%]	4	4	4	4.5	4.95
Number of gadolinia pin (Enriched + Natural)	28	24+4	28	20+4	20
^{155,157} Gd enrichment [wt.%]	70	70	70	50	70
Content of natural gadolinia [wt.%]	-	4	-	2	-
²³⁵ U in UO ₂ -Gd ₂ O ₃ [wt.%]	1.8	1.8	1.8	1.8	1.8

- Effective multiplication factor (k_{eff})
 - ARO depletion state and critical positions of regulating banks
 - $1.005 < k_{eff} < 1.015$
 - Discharging burnup of 21.8 MWd/kg
 - Long-cycle operation goal of 30 months

 \mathbf{k}_{eff} and critical control rod position from core depletion calculation

- Axial shape index (ASI) and 3D pin peaking factor (F_q)
 - ARO depletion and rod operation states
 - $-0.35 < \frac{\text{ASI}}{\text{ASI}} < +0.35 / \frac{\text{F}_{q}}{\text{F}_{q}} < 2.5$
 - Power concentration increased at the bottom during rod operation

Axial shape index (ASI) and 3D pin peaking factor (F_q)

- Radial and Axial power distribution
 - Maximum control rod insertion at BOC
 - Core's central region with low-enrichment fuel
 - Regulating banks R4 and R3 were withdrawn from the bottom of the core by 32.59 cm and 152.59 cm, respectively
 - Power in R4 decreased by 31.3%, while R3 showed a 1.9% decrease

Axial power distribution at BOC

Shutdown margin and reactivity coefficients calculation

■ HFP → HZP →CZP	State	BOC [pcm]	MOC [pcm]	EOC [pcm]
Positive reactivity	All-rod-in worth (1)	31,466	33,319	34,894
i obitive reactivity	Worth of worst stuck rod (2)	2,080	2,764	4,294
(Power defect, xenon burnout,	Uncertainty of rod worth (3) = (1) * 10%	3,146	3,331	3,489
Doppler effect and isothermal defect)	Rod worth for criticality (4)	1,455	925	495
	Engineering error (5)	100	100	100
E E E E R1 S1 R2 R1 F D D D D E S3 S2 S5 S4	Real worth (6) = (1) – [(5) + (4) + (3) + (2)]	24,685	26,199	26,516
E D C B C D D E R1 S4 R4 S6 R3 R4 S3 R1 E D C B C D D E R1 S4 R4 S6 R3 R4 S3 R1 E D C B C D E S5 S7 S7 S6 S1	Power defect from HFP (EQ xenon) to HZP (NO xenon) (7)	3,796	4,013	4,510
E D B A A B D E R2 S2 R3 R2 R3 S2 R2 E D C B A B D E R2 S2 R3 R2 R3 S2 R2 E D C B A B C D E S1 S6 S7 S7 S5	Isothermal defect (8) (HZP to CZP)	7,599	4,833	5,356
E D D C B C D D E R1 S3 R4 R3 S6 R4 S4 R1	Engineering error (9)	100	100	100
E D D D D E E E E E S4 S5 S2 S3 R1 R2 S1 R1	Total defect (10) = (7) + (8) + (9)	11,495	9,846	9,966
Loading pattern and control rod pattern	<mark>Shutdown margin</mark> (11) = (6) – (10)	<mark>13,190</mark>	<mark>17,253</mark>	<mark>16,550</mark>

Rod worth by location of regulating & shutdown bank

CASE	EFPD [day]	Xe	Sm	State	FTC [pcm/°C]	MTC [pcm/°C]	ITC [pcm/°C]
BOC	0	EQ	TR	HFP	-2.62	-56.68	-59.60
		NO	NO	HZP	-3.02	-57.01	-60.03
		NO	NO	CZP	-3.24	-12.31	<mark>-15.56</mark>
мос	451	EQ	TR	HFP	-2.86	-53.06	-54.99
		NO	NO	HZP	-3.47	-52.62	-56.09
		NO	NO	CZP	-3.57	-7.43	<mark>-11.00</mark>
EOC	901	EQ	TR	HFP	-3.17	-54.99	-58.16
		NO	NO	HZP	-3.80	-53.82	-57.62
		NO	NO	CZP	-3.85	-3.52	<mark>-7.37</mark>
						2024-11-04	17

Unist Core

Conclusion

Conclusion

- Enriched gadolinia
 - SBF and long-cycle operation without new burnable absorber
 - Thermal conductivity
 - With low-content natural gadolinia flattens the reactivity curve
 - Discharging burnup of 21.8 MWD/kg over a 30 months
- Core design
 - Homogeneous axial composition
 - Effective multiplication factor : 1.005< k_{eff} < 1.015
 - Peaking factor : $F_q < 2.5$
 - Axial shape index : 0.35 < ASI < + 0.35
 - Shut down margin : SDM > 3,000 pcm
 - Isothermal temperature coefficient : ITC < 0 pcm/°C at all condition

Conclusion

- Future work
 - Optimization of the number/location/enrichment of gadolinia rods
 - Improvement in reactor core loading pattern
 - Improvement in control rod pattern
 - Use of LEU+
 - Investigate innovative burnable absorbers, reflectors
 - Economic efficiency for gadolinia enrichment
 - Enriched gadolinia in the core's central region
 - Natural gadolinia in the core's outer region

Reference

- 1. Y. G. Jo, H. C. Shin, "Design Optimization of Cylindrical Burnable Absorber Inserted into Annular Fuel Pellets for Soluble-Boron-Free SMR", Nuclear Engineering and Technology, Vol. 54, pp. 1464-1470, 2022.
- 2. J. S. Kim, T. S. Jung, J. I. Yoon, "Reactor core design with practical gadolinia burnable absorbers for soluble boron-free operation in the innovative SMR", Nuclear Engineering and Technology, Vol. 56, pp. 3144-3154, 2024.
- 3. J. C. Lee, S. Q. Zee, K. S. Kim, J. S. Song, "A Study on the Nuclear Characteristics of Enriched Gadolinia Burnable Absorber Rods", KAERI/RR-2155/2000, 2001.
- 4. J. S. Kim, B. H. Cho, S. G. Hong, "Applicability Evaluation of Enriched Gadolinium as a Burnable Absorber in Assembly Level for Boron-Free i-SMR Core", Transactions of Korea Nuclear Society Spring Meeting, 2022.
- J. W. Choe, S. Y. Choi, P. Zhang, J. S. Park, W. K. Kim, H. C. Shin, H. S. Lee, J. E. Jung, D. J. Lee, "Verification and validation of STREAM/RAST-K for PWR analysis," Nuclear Engineering and Technology, Vol. 51, pp. 356-368, 2019.
- 6. Advances in Small Modular Reactor Technology Developments, IAEA Advanced Reactors Information System (ARIS), 2020 Edition, 2020.