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1. Introduction 

 
In the event of a severe accident at a nuclear power 

plant, which could lead to reactor core meltdown beyond 

the design basis accidents, mitigation strategies must be 

implemented to minimize the radioactive material 

release. These mitigation strategies follow the Severe 

Accident Management Guideline (SAMG). In SAMG, 

instead of following a predefined procedure, one of the 

available mitigation strategies is selected based on the 

symptom-based approach, depending on the specific 

accident conditions [1]. However, during an accident, 

selecting a mitigation strategy can lead to human error 

due to the high-stress environment. Therefore, having an 

accident management support tool (AMST) that can 

assist in this decision-making process would greatly 

contribute to the effective mitigation of the accident [2]. 

One of the essential functions that an AMST must 

have is the ability to accurately predict the progression of 

an accident, minimizing uncertainties as much as 

possible. Suppose the AMST can accurately forecast the 

outcome of severe accidents based on the application of 

different mitigation strategies, it will enable operators to 

identify which strategy is the most effective.  

To develop a AMST prediction model, deep learning 

methods can be employed. According to the Universal 

Approximation Theorem, these methods are capable of 

approximating nonlinear data, making them suitable for 

modeling complex accident scenarios [3]. Lee et al. 

developed a severe accident prediction model using deep 

learning methods, demonstrating strong predictive 

performance [4].  

Building upon this research, the goal is to evaluate 

whether the deep learning model can accurately predict 

accident progression in time intervals that were not 

included in the training data. While the previous study 

trained the model using the entire 72-hour dataset, this 

research aims to train the model with only the first 24 

hours of data and assess its ability to predict the 

progression of the accident beyond that time. In real 

accident scenarios, there is no guarantee that an accident 

will be mitigated within 72 hours, as seen in the 

Fukushima accident, which lasted over a week. 

Therefore, if the model demonstrates strong predictive 

performance in untrained periods, it would greatly 

enhance its practical applicability in real situations. 

 

2. Methods 

 

2.1 Generation of Accident Scenario Dataset 

 

The dataset used in this study is fundamentally based 

on the dataset from previous research [4]. This dataset 

was calculated using the severe accident analysis code 

MAAP 5.03 [5] and was based on the OPR1000 nuclear 

power plant. A total of 10,679 accident scenarios were 

generated, and in these scenarios, the random failure of 

seven components and the application of mitigation 

strategies occurred within the 72-hour period. The list of 

components that can fail under these scenarios is shown 

in Table I, which includes components selected based on 

their likelihood of failure in the event of a TLOCCW. 

The list of mitigation strategies includes SAMG 1, 2, and 

3, which are selected for their applicability to the primary 

system. 

While the previous study extracted data with 1-hour 

interval and trained the model on the entire 72-hour 

dataset, this study intends to train the model using only 

the first 24 hours of data. Therefore, the data was 

extracted at more frequent 15-minute intervals. 

Additionally, to improve the generalization performance 

of the model, 3,679 scenarios were selected by excluding 

data with similar accident progressions. 

 

Table I Components those can be failed during 

TLOCCW accident scenario 

Component Name 

RCP seal LOCA 

HPSI 

LPSI 

CHP 

CSS 

MDAFW 

HX 

 

2.2 Bi-LSTM model 

 

The methodology used in this study is the 

Bidirectional LSTM (Bi-LSTM) model. This model was 

chosen because it demonstrated the best performance in 

the previous research. 

A Bi-LSTM model is an extension of the traditional 

LSTM network, designed to capture temporal 
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dependencies in sequence data. While a standard LSTM 

processes data in one direction (from past to future), the 

Bi-LSTM processes the input data in both forward and 

backward directions. This enables the model to have a 

more comprehensive understanding of the sequence by 

considering both past and future context. 

LSTM networks are well-known for their ability to 

handle long-term dependencies due to their internal 

memory mechanism, which helps in retaining important 

information over extended time intervals while 

mitigating the vanishing gradient problem. As shown in 

Fig. 1, in a Bi-LSTM model, two separate LSTM layers 

are used: one processes the sequence in the original time 

order (forward pass), and the other processes the 

sequence in reverse order (backward pass). The outputs 

from both directions are then combined, allowing the 

model to leverage information from the entire sequence 

at each time step. 

This bidirectional approach makes the Bi-LSTM 

model particularly effective for tasks where the context 

from both past and future data points is important for 

making accurate predictions, which is highly useful in 

time-series forecasting or sequence prediction. 

The input and output structure of the Bi-LSTM model 

used in this study is illustrated in Fig. 2. The model uses 

data from past three time steps to predict the thermal-

hydraulic variables for the next time step. In this process, 

the input consists of thermal-hydraulic variables along 

with the status of component failures and the application 

of mitigation strategies, represented as binary values of 

0 or 1. 

The thermal-hydraulic variables used for prediction 

are limited to those that can be measured in the Main 

Control Room (MCR), ensuring that the model relies on 

information that would be available during an actual 

accident. 

 

 
Fig. 1 Architecture of LSTM cell and Bi-LSTM [6] 

 

 

 

 
Fig. 2 Input and output structure of Bi-LSTM model 
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2.3 Performance Metrics 

 

The performance metrics used in this study are the 

same as those employed in the previous research [4]. To 

evaluate the regression performance of the model—

specifically, how well it predicts the next time step when 

the actual values are used as input—Mean Absolute 

Error (MAE) was used. 
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Additionally, the full scenario prediction performance 

of the model, where predicted values are fed back as 

input for subsequent predictions, was assessed by 

measuring the similarity between the predicted data and 

the actual MAAP data using Dynamic Time Warping 

(DTW) distance, a common method for measuring 

similarity in time-series data. For both MAE and DTW 

distance, lower values indicate better performance. In 

this study, dynamic time warping distance was calculated 

using DTAIDistance tool of python [7]. 

 

3. Results and Discussion 
 

To compare the performance of the Bi-LSTM model 

trained on 24-hour data, a second model was developed 

using the full 72-hour dataset at 15-minute intervals, 

referred to as the 72-hour Bi-LSTM model. Both models 

were trained using the same dataset, divided in a 7:2:1 

ratio for training, validation, and test sets. However, the 

24-hour model was trained using only one-third of the 

time-series data (24 hours), while the 72-hour model 

used the full dataset. All input variables were normalized 

to values between 0 and 1. The hyperparameters of the 

Bi-LSTM models are summarized in Table II. 

 

Table II Hyperparameter of Bi-LSTM model 

 
Number of 

LSTM cell 

Number 

of layers 
Epoch Loss Optimizer 

Hyper- 

parameter 
32 2 

500 with 

early 

stopping 

MSE Adam 

 

 

Using the above hyperparameter settings, both the 24-

hour and 72-hour models were trained, and their 

predictive performance on the test set was compared 

using MAE, as shown in Table III. The 24-hour model 

showed a slightly lower MAE value compared to the 72-

hour model, likely due to the higher dependency between 

data points when using a shorter time series. Additionally, 

when the 24-hour model was tested on the test set of 72-

hour model, the MAE value was around 0.023, which is 

approximately four times higher than the original MAE, 

indicating a significant drop in performance when 

predicting beyond the trained time range. 

 

 

Table III Test set MAE of Bi-LSTM model 

 
24-hour 

model 

72-hour 

model 

24-hour model 

with 72-hour 

test set 

Test set MAE 0.0049 0.0062 0.0229 

 

Next, the full scenario prediction was conducted for 

both the 24-hour model and the 72-hour model. The 

predictions were compared with the 72-hour MAAP data, 

and the DTW distance was calculated. As shown in Table 

IV, the DTW distance for the 24-hour model was 

approximately 1.3 times larger than that of the 72-hour 

model. This confirms the expected outcome that the 

predictive performance of the 24-hour model is inferior 

to that of the model trained on the full 72-hour dataset. 

 

Table IV  DTW distance between full scenario 

prediction results and 72-hour MAAP data 

 24-hour model 72-hour model 

DTW 

distance 
3.785 2.930 

 

 

In Fig. 3, the distribution of the full scenario prediction 

results of 24-hour model and the MAAP data for the 

primary system pressure is shown. This figure represents 

the mean and 1-sigma distribution for the test set. From 

the graph, it can be observed that up to around 24 hours, 

the mean values are nearly identical, but beyond that 

point, the model predicts nearly constant values, making 

it difficult to accurately predict the actual values. 

 

 
Fig. 3 Comparison between primary system pressure of 

full scenario prediction results of 24-hour model and 

MAAP data (Solid line : mean, envelop : std) 
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4. Summary and Further Works 

 

In this study, Bi-LSTM model was developed to 

predict severe accident progression in a nuclear power 

plant. Building on the previous research, which used 72-

hour datasets for training, this study aimed to evaluate 

the ability of model to predict beyond trained time 

intervals by focusing on the first 24 hours of data.  

Two models were developed for comparison: one 

trained on the full 72-hour dataset and another on the first 

24 hours. The results showed that the 24-hour model had 

a slightly lower MAE compared to the 72-hour model 

when predicting the test set, which can be attributed to 

the stronger dependency between data points in the 

shorter time series. However, when the 24-hour model 

was tested on the 72-hour test set, its MAE increased 

significantly, approximately four times higher than its 

original value, indicating a drop in predictive accuracy 

when applied to longer, untrained time ranges. 

Additionally, when evaluating the full scenario 

prediction performance, the 24-hour model showed very 

accurate predictions for the first 24 hours but predicted 

nearly constant values beyond that point, leading to 

discrepancies with the actual data. This is likely an 

unavoidable result due to the limited training data. 

However, it is possible that there are models capable of 

better predictions even with restricted training data, and 

with optimized hyperparameters, improved results could 

be achieved. 
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