D. Oh¹, G.W. Baek¹, D. Kim¹, Y. Jung¹, B.K. Jung², and C. Sung^{1*} *1Korea Advanced Institute of Science and Technology, Daehak-ro, Yuseong-gu, Daejeon, South Korea 2Q-BEAM SOLUTION, 160, Daehwa-ro, Daedeok-gu, Daejeon, South Korea*

NQe 원자력 및 양자공학과

KAIST Nuclear & Quantum Engineering

n, 160, Daehwa-ro, Daedeok-gu, Daejeon, South Korea **Fusion and Plasma Dynamics Laboratory**
*E-mail: choongkisung@kaist.ac.kr

Development of Radiative Divertor Simulator Using Magnetic Mirror Device at KAIST

Computer-aided design model of the KAIMIR chamber

Development of Radiative Divertor Simulator Expander gas feed

^[4] Choe, M., et al. "Development of a diamagnetic loop in KAIMIR." *Review of Scientific Instruments* 95.7 (2024). This work was supported by the National Research Foundation of Korea (NRF) funded by the Korea government (Ministry of Science and ICT) (RS 2023 00212124, RS 2022 00155956).

- Divertor component is utilized to protect plasma facing material and control impurities from the wall in closed field systems
- A comprehensive understanding of the divertor region is required to satisfy the thermoengineering limits of the plate, preventing damages caused by high heat and particle flux
	- Since the magnetic field in divertor region is open, simulation in open field device can be more efficient than in overall system, which is much more complex
- Heat flux on the divertor can be reduced by puffing main ion or impurity species near the target in the **radiative divertor**, which induces **radiative power dissipation**
- **Magnetic mirror device** (KAIMIR) [2] was employed to simulate radiative divertor
	- Valid for test bed of divertor region to study divertor physics with low cost and similar geometry
	- Produces **~4–6 eV, ~1018–20 m-3 Helium plasma** for **~12 ms** using a plasma gun [3]

 Differential pressure between the chambers was observed **with the skimmer** Generates **~60 ms time delay** of the pressure evolution in the chambers that gas was not fed • P_{source} < ~9 mTorr & $P_{expander}$ < ~30 mTorr while pressure at the other chamber < 1 mTorr

Skimmer at the entrance of expander blocks gas flow between chambers → **Sustain the pressure difference** during the discharge

Diverted plasma configuration in a tokamak and schematics showing mitigation of heat flux with gas puffing [1]

- The increase was stronger when the gas was fed at the expander, since overall volume is smaller
- Confirmed that the **pressure difference** was **sustained** during the discharge (0 12 ms)

Verification of the independent pressure control of each chamber

 $T_{\text{inj.}} = -100$ – 0 ms, $Q_{\text{inj.}} = 13 \text{ s/m}$ (Dataset low-pass filtered by $f_c = 10 \text{ kHz}$)

- Variations in the I_{sat} at the center were negligible (<10%), while I_{sat} at the expander region slightly increased (~30%) until $P_n = 16$ mTorr \bullet I_{sat} at the expander decreased with increasing pressure when $P_n > 16$ mTorr \bullet I_{sat} at the center stayed at similar level despite the increased neutral pressure at the center chamber **Changes at the central region** 0 10 20 30 0 $1x10^{20}$ $2x10^{20}$ \longrightarrow n_e (Center $-$ T $_{\circ}$ (Center P_n (expander) (mTorr) $n_{\rm e}$ $\rm (m^{-3})$ 0 5 10 Electron density (n_e) and temperature (T_e) with pressure at expander \vdash $\left(\overline{e}\right)$ 0 10 20 30 0.00 0.05 $\overrightarrow{\ge}$ 0.10 (ີ⊆ ^{0.15}
⊃_(
≶ 0.10 0.20 0.25 Stored energy per length (W/L) with pressure at expander P_n (expander) (mTorr) —■— W/L 0 10 20 30 0 5 $\widehat{\mathsf{H}}$ 10 15 —— Expander $-$ Center P_n (expander) (mTorr) $\mathsf{I}_{\mathsf{sat}}\left(\mathsf{Expader}\right)$ (mA) 0 50 100 150 $\mathsf{I}_{\mathsf{sat}}$ (Center) (mA)
- Gradual decrease of T_e and increase of n_e were observed with the steady particle flux
- Reduction in the stored energy per length, measured by DL, was also consistent
- Cooling of the expander can reduce energy at the center and degrade the energy

Independent control of each chamber pressure is required to induce

Expander gas feeding with the differential pumping system

 $\mathsf \Omega$

 $_{n}$ (mTorr)

 \bullet $|T_{\text{feed}}| > 60 \text{ ms } \rightarrow P_{n}$ (center) increased significantly

- The density increased due to higher ionization rate with the increased neutral density
- Frequent collisions with neutrals may reduce the electron temperature as observed
- Reduced flux when $P_n > 16$ mTorr will be the result from the increased neutral pressure in | both expander and center chambers
	- Axial profile of the compensated I_{sat} with pressure at expander
	- 100 Skimmer I
- Change of the cross-section area of the plasma (A_{pl}) compensated by dividing the field intensity ($|B|$)
- Particle flux, Γ can increase even with constant particle flow rate, S, due to BA_{pl} = Const. ($\Gamma \sim SA_{pl} \propto I_{sat}/|B|$)
- \bullet In P_n < 16 mTorr, little change in axial profile of

confinement at the central region, which should be investigated in the future

Changes at the expander region

- **Effects to the particle flux**
- Ion saturation current (I_{sat}) at the expander and center
- with pressure at expander