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1. Introduction

Machine learning, a branch of artificial intelligence,
enables computers to learn patterns and rules from data
without explicit programming. This technology can be
effectively utilized for the prediction and analysis of
complex systems. In a nuclear reactor, a loss-of-coolant
accident (LOCA) can occur when the coolant pressure
drops below the internal fuel rod gas pressure, causing
the cladding to expand and potentially rupture under
certain conditions. Such accidents can significantly
impact reactor safety, making accurate prediction and
preventive measures crucial. This study applied a
machine learning regression model to predict cladding
rupture in LOCA scenarios using data from NUREG-
0630 [1].

2. Rupture prediction methodology
2.1 Data analysis

Before applying machine learning, data preprocessing
is required. Missing values and outliers were identified
and removed from the experimental data. The total data
consists of 216, of which 162, or 75%, were used as
training data, and the remaining 54, or 25%, were used
as evaluation data. The independent variables of the
experimental data are heating rate and pressure, and the
dependent variables are burst temperature, strain, and
burst stress. Detailed information about the data is
presented in Table 1.

Table I: Experimental data of NUREG-0630

Range Average
Ramp Rate [K/s] 0-44 20.8
Rupture Pressure [MPa] 0.5-19.1 6.8
Rupture Temperature [K] | 961 - 1553 1136.8
Burst Strain [%] 8-116 44.8
Burst Stress [MPa] 4.7-155.1 52.1
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Fig. 1. Burst test data of Zircaloy cladding
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Fig. 2. Correlation coefficient between variables

The distribution of data and the relationship between
variables are shown in Fig. 1, and the correlation
coefficients between variables are shown in Fig. 2. A
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correlation coefficient closer to 1 indicates a strong
positive correlation, a closer to -1 indicates a strong
negative correlation, and a closer to 0 indicates no
linear correlation. The correlation coefficient between
the independent variable, pressure, and the dependent
variable, rupture temperature is -0.75, showing an
inverse proportional tendency in (I) of Fig. 1. On the
other hand, the correlation coefficient between pressure
and rupture stress is 0.99, showing a linear proportional
tendency in (v) of Fig. 1. The strain data has no clear
trend and is scattered throughout.

2.2 Machine learning algorithm

XGBoost [3] was used for regression analysis.
XGBoost (eXtreme Gradient Boosting) is based on the
gradient boosting algorithm that sequentially trains
multiple weak learners (decision trees) and minimizes
errors through gradient descent, and has improved
GBM (Gradient Boosting Machine) to prevent
overfitting and have efficient parallel processing
functions. The model was trained with heating rate and
pressure as independent variables and rupture
temperature, strain, and rupture stress as dependent
variables. In order to maximize model performance, the
Bayesian Optimization package [4] was used to
optimize the hyperparameters of XGBoost, including
learning_rate (the degree of error correction of the tree),
max_depth (the maximum depth of the tree), subsample
(the ratio of data samples that the tree will learn), and
n_estimators (the number of trees).

3. Rupture prediction results

The prediction results of the cladding failure model
using XGBoost are shown in Fig. 3. The predicted
values for burst temperature and burst stress are similar
to the actual values; however, the difference between
the predicted and actual values for strain is relatively
large. The model performance was evaluated using
MAPE (Mean Absolute Percentage Error). MAPE
represents the absolute error between predicted and
actual values as a percentage and calculates the average
of these values to assess prediction accuracy. The model
evaluation results are presented in Table II. For the test
data, the error ranges are 2.2% and 6.3% for burst
temperature and burst stress, respectively, while the
strain shows a relatively large error range of 25.6%.
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Fig. 3. Evaluation by XGBoost algorithm

Table II: XGBoost prediction performance for cladding

rupture
XGBoost
Features MAPE
Train Test
RuptureTemperature(K) 1.2% | 2.2%
Burst Strain(%) 25.4% | 25.6%
Engineering Burst Stress(MPa) | 3.3% | 6.3%

4. Conclusions

This study performed a machine learning regression
analysis based on experimental data to predict the
failure of Zircaloy cladding under LOCA conditions.
Analysis of the correlation coefficients between
variables and the failure prediction results indicates that
the correlation between independent and dependent
variables affects prediction performance. When the
absolute value of the correlation coefficient between
any of the two independent variables and the dependent
variable is closer to 1, the prediction performance is
better; however, when it is closer to 0, the performance
is poorer. Machine learning models are highly
dependent on the quality and quantity of data, making
data consistency and comprehensiveness crucial. The
data used in this study were collected from multiple
experiments rather than a single experiment, leading to
differences in experimental conditions. Since these
differences in experimental conditions may have
affected the correlations between variables, analyzing
these effects is necessary. Future research should aim to
improve prediction performance by acquiring additional
data under the same experimental conditions to enhance
performance in specific scenarios or by collecting more
data that covers a variety of experimental conditions to
improve the model's generalization ability and reduce
uncertainty.
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