
 The cycle length prediction model of CNN consists of 9 convolutional layers with a total of 

650K parameters. The peaking factor prediction model of CNN, on the other hand, comprises 13 

convolutional layers with a total of 1500K parameters. The cycle length prediction model of ViT 

consists of 3 Transformer encoder layers with a total of 350K parameters. The peaking factor 

prediction model consists of 9 Transformer encoder layers, with a total of 2,100K parameters. 

 Comparing the RAST-K calculated values with the AI predicted values. The two graphs for 

cycle length looks similar, but for the peaking factor, the predictions from the ViT model are 

more closely clustered around the actual values.  
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 In the CNN, assembly-wise data is used, which includes the average fuel 
enrichment, the number of BP rods, the mass fraction of burnable poison, and 
the initial average burnup for each assembly. In contrast, the ViT uses pin-wise 
data, which includes the fuel enrichment, mass fraction of burnable absorber, and 
the 4-unit assembly burnup for each pin. Based on these features, Two models 
were trained with each architecture, the cycle length prediction model and 
peaking factor prediction model. When training the models, the entire dataset was 
split into three portions: 80% was used for model training, 10% for validation 
during training, and the remaining 10% for testing the model after training was 
completed.  
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Table I: Average of SA results. 

CONCLUSION 
In this study, we aimThis study developed an ViT-assisted screening technique to enhance the 

efficiency of SA for optimizing the LP of the OPR-1000 reactor. Comparing CNN-based and 

ViT-based approaches, the ViT model showed a slight improvement in efficiency (99.8% vs. 

99.6%) due to more accurate predictions, especially for the peaking factor. Both approaches 

yielded similar optimal LPs, indicating that the AI model need more data nearing the optimal LP.  

In future research, we plan to incorporate the optimal LP obtained through SA into the AI 

training dataset, aiming to develop models capable of performing more accurate evaluations in 

the vicinity of the optimal LP region. By adding more data near the optimal region compared to 

the existing dataset, the AI will be able to focus on additional learning in that area, leading to 

more precise LP evaluations. This approach is also expected to enhance the efficiency of the 

screening technique in the SA process, allowing for the discovery of more optimal LPs in a 

shorter time frame.  
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INTRODUCTION 
To enhance the safety and efficiency of a reactor core, it is crucial to optimize the fuel assembly 

loading pattern (LP). However, given the vast number of potential LPs, evaluating every possible 

LP is impractical. Although methods such as simulated annealing (SA) can be employed to 

search for an optimal solution, they still necessitate a substantial number of LP evaluations. To 

address this challenge, a screening technique utilizing a simplified model [1] has been proposed. 

This method can evaluate LPs at a much faster rate compared to traditional 3D deterministic 

calculations, thus enabling more rapid LP optimization.  

Previous research has explored the use of Convolutional Neural Networks (CNNs) for LP 

evaluation [2]. However, CNNs are designed to analyze images using convolutional filters of 

fixed sizes, making them more suited for extracting features from relatively small regions. This 

characteristic of CNN limits their efficiency when dealing with large LP images where each pin 

is represented as a pixel. 

In this study, we aim to enhance the accuracy of LP evaluations by utilizing the Vision 

Transformer (ViT) model [3]. ViT divides the entire image into small patches and captures the 

relationships between all patches using a self-attention mechanism. This process helps in 

extracting features over a broader range compared to the filter-based approach of CNNs. By 

integrating ViT, we have improved the efficiency of the screening technique, thereby enabling 

faster execution of SA to identify the optimal LP.  

 

METHODS AND RESULTS  

The LPs for the training dataset were generated by shuffling fuel assemblies (FAs) based on the 

reference LP. First, the FAs located at the center of the core (region 0) do not participate in the 

exchange. Next, FAs in region 1 and FAs in region 2 are swapped separately. If the exchange of 

FAs in Region II disrupts the 8th symmetry of the FA types, the symmetry is maintained by 

swapping the corresponding FAs in the 8th symmetric region. Finally, two FAs of identical type 

in region 1 are selected and exchanged with two FAs in region 2.  

Fig. 1. The reference LP of OPR-1000 [2] and assembly shuffling method. In the refer

ence LP, green indicates fresh fuel, yellow indicates once-burnt, and red indicat

es twice burnt fuel assembly. 

A total of 100,000 LPs were generated. For each LP, the cycle length and peaking factor were 

calculated using RAST-K code. The cycle length is defined as the Effective Full Power Day 

(EFPD) at which the critical boron concentration reaches 10 ppm, and the peaking factor 

represents the maximum value of Fxy in the cycle.  

Fig 2. Distribution of cycle length and max-Fxy in the generated LPs. 

Fig 3. Features of CNN (Left) and ViT (Right) models. 

Fig 4. Comparison of RAST-K calculated values with the AI predicted values. Left is for 

cycle length and right is for max-Fxy. 

 By utilizing the AI models trained on CNN and ViT architectures, the technique rapidly 

evaluates candidate LPs, significantly reducing the computational cost compared to full 3D 

deterministic calculations. However, since AI predictions inherently have some error compared 

to actual values, this must be considered. For the LPs used in training, the average error (∆𝐽) and 

standard deviation (𝜎) of the objective function are calculated by comparing the AI-predicted 

values with the RAST-K calculated values. These values are then used to define the range within 

which the true objective value of the current LP may exist. The upper (𝐽𝑚𝑎𝑥
3𝐷 𝑋 ) and lower 

(𝐽𝑚𝑖𝑛
3𝐷 𝑋 ) bounds of this range. If the upper bound of the current LP is lower than the acceptable 

value, the LP is accepted. Conversely, if the lower bound is higher than the acceptable value, the 

LP is rejected. If the acceptable value lies within these bounds, a 3D calculation is performed. 

 

𝐽𝑚𝑎𝑥
3𝐷 𝑋 =  𝐽𝐴𝐼 𝑋 +  ∆𝐽 + 2𝜎 , 𝐽𝑚𝑖𝑛

3𝐷 𝑋 =  𝐽𝐴𝐼 𝑋 +  ∆𝐽 − 2𝜎             (Eq. 1) 

 

 If the upper bound of the current LP is lower than the acceptable value, the LP is accepted. 

Conversely, if the lower bound is higher than the acceptable value, the LP is rejected. If the 

acceptable value lies within these bounds, a 3D calculation is performed. 

In the average results of 20 runs each for CNN-based SA and ViT-based SA. In the case of SA 

using CNN, the average efficiency was 99.6%, while the efficiency slightly increased to 99.8% 

when using the ViT. This improvement in efficiency can be attributed to the more accurate 

peaking factor prediction model used in the ViT-based approach. In the average optimal LP in 

the SA results. the cycle length and peaking factor of the optimal LP showed almost no 

difference between the two approaches. This is likely because the AI models have trained with a 

little of LPs near of the optimal points, which causes the accuracy of the model prediction lower. 

Table II: Average optimal LP in the SA results. 
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