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1. Introduction 
 

Global interest in small modular reactors (SMRs) is 
steadily increasing, driven by their advantages in 
enhanced safety design (e.g., passive safety systems) and 
operational flexibility (e.g., electricity demand-
adjustment capability). Given that SMRs are intended for 
multi-module operation concept, operators are tasked 
with monitoring and controlling multiple modules from 
a single control room. In the experiment performed by J. 
Hartmann et. al. [1], it is observed that the number of 
reactors that a single operator can safely operate highly 
dependent on the states of the reactors. Furthermore, 
when manual intervention is required, the situation 
becomes increasingly challenging a single operator to 
manage and increase operator’s workload.  

Power increase operation is a typical example where 
manual intervention is dominant among the operational 
modes in nuclear power plants (NPPs). First, the need of 
decision making is increased such as selection of power 
operation target and determination of the control strategy 
based on guidelines [2]. Second, many manual actions 
are required due to extensive maintenance and 
monitoring plant parameters [2]. Lastly, procedure 
description may be relatively insufficient in some 
procedural steps, providing only the operational goal 
without detailing the specific tasks for the operator.  

One effective strategy to reduce operator’s workload 
during power increase operation is to enhance the level 
of automation. In recent years, the utilization of AI has 
become a prominent trend across various industrial fields, 
with its ability to process numerous variables and to 
make complex decisions autonomously. AI presents a 
promising alternative for developing intelligent 
controllers specifically designed for power increase 
operations [2-4]. 

In this regard, this study focuses on developing an 
algorithm to fully automate the power increase operation 
of SMR. To achieve this, a simulator of an integral 
Pressurized Water Reactor (iPWR), a type of SMR 
currently being developed in several countries, was 
utilized. The algorithm aims at increasing the reactor 
power from 0% to 100%. To identify the targets for 

automation and derive appropriate control strategies, 
task analysis on the power increase operation procedure 
was performed. Based on the control strategies, proximal 
policy optimization (PPO) and ‘if-then’ logic were 
applied respectively for continuous and discrete actions. 
 

2. Power increase operation of small modular 
reactor 

 
2.1. Overview of the power increase operation  
 

The iPWR simulator used in this study is designed for 
a SMR with a thermal power of 150 MW and an 
electrical power of 45 MWe. In this simulator, the 
operational range covers from the hot standby condition, 
as defined by commercial large-scale nuclear power 
plants, to 100% reactor power. The operation is broadly 
divided into two phases: 1) low-power operation from 
the hot standby condition to turbine synchronization, and 
2) high-power operation from turbine synchronization to 
100% reactor power. The initial and final conditions for 
the power increase operation are presented in Table I.  

 
Table I. Major parameter status at initial and final 

conditions of power increase operation 
Major parameter Initial condition Final condition 

Reactor neutron power 0 % 100 % 
Generator power 0 % 45 MWe 
Reactor coolant 

system (RCS) average 
temperature 

250.11 ℃ 287.42 ℃ 

Turbine revolutions 
per minute 

0 RPM 3600 RPM 

Turbine load demand 0 MWe 45 MWe 
Rod position 0 Step (A Bank) 

0 Step (B Bank) 
0 Step (C Bank) 

80 Step (A Bank) 
80 Step (B Bank) 
49 Step (C Bank) 

Synchronous 
connection 

Disconnected Connected 

 
 

2.1. Task analysis 
 
This section describes a task analysis for the power 

increase operation, utilizing the power increase operation 
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procedure of the iPWR simulator. Through the analysis, 
this study identified the targets for automation, control 
implementation strategies, and the key input and output 
parameters for the algorithm. 

For the task analysis, the decomposition method was 
used. This method involves breaking down complex 
tasks into smaller, more manageable subtasks, thereby 
facilitating a systematic understanding of each step 
within the operating procedure. Task decomposition was 
conducted based on the following categories: step, main 
task, sub-task, action verb, monitoring parameter, 
expected response, graphical user interface (GUI) sheet, 
manipulation, and control type. 

Table II presents an example of the task analysis 
results, identifying a total of 19 control actions. These 
actions were categorized into two types: discrete and 
continuous controls. Discrete control involves the direct 
setting of a target value based on specific, predefined 
conditions. In such systems, the control actions are 
triggered by distinct conditions, resulting in a step-wise 
change in the system state. For example, “Push OUT 
until Bank C reaches 49 steps”. For discrete controls, the 
strategy was set to apply ‘if-then’ logic. In contrast, 
continuous controls involve adjusting component states 
to achieve specified operational goals, where the 
adjustments cannot be easily defined by simple logic. For 
example, “Introduce the new boron concentration 
setpoint (until neutron power stabilizes at 8%)". 
Reinforcement learning is employed for continuous 
control, as it requires real-time monitoring of parameter 
states, adaptive decision-making, and ongoing 
adjustments to respond effectively to dynamic conditions. 

 
3. Development of power increase automation 

algorithm  
 
This section describes the design and development 

process of the power increase automation algorithm The 
control modules designed for automation are categorized 
into two types: discrete and continuous, as illustrated in 
Figure 1. 

 
3.1. Discrete control module using if-then logic 

The discrete control module was designed for the 
discrete controls identified through the task analysis, 
with ‘if-then’ logic. For example, in Step 7, the control 
rods in bank B need to be withdrawn. The automation of 
this step is implemented using ‘if-then’ logic in the 
following sequence: 1) switch the bank selector to B, 2) 
click the ‘OUT’ button until all control rods in bank B 
are fully withdrawn, and 3) once the rods are fully 
withdrawn (at 80 steps), proceed to the next step in the 
procedure. 

 
3.2. Continuous control module using PPO algorithm 

PPO algorithm is a policy-based reinforcement 
learning method based on the Actor-Critic framework. In 
this approach, the Actor network determines which 
action to take given a specific state, while the Critic 

network calculates the advantage of the action taken by 
the Actor. The key strength of the PPO algorithm is 
stability in learning convergence with a clipping 
mechanism. During the process of updating the policy by 
the Actor network, there is a risk that the new policy may 
deviate, potentially leading to divergence in the learning 
process. To prevent this risk, the PPO algorithm applies 
clipping to ensure that the new policy does not exceed a 
predefined threshold, thereby improving the stability. 

Step 9 is a representative example of a continuous 
control operation, where boron dilution is required to 
achieve reactor criticality. The goal of this step is to raise 
reactor power and stabilize it at 8%. During this process, 
the boron concentration must be adjusted within 20 ppm 
per batch, and the start-up rate (SUR) must be maintained 
below 0.5 dpm. To automate Step 9, reinforcement 
learning was applied to enable continuous control that 
adapts to varying conditions. 

 
Table II. Example of task analysis on the power 

increase operation procedure using the decomposition 
method. 

 
 

Step Main task Sub-task Action  
verb 

Monitoring 
parameter 

Expected  
response 

GUI  
sheet 

Mani- 
pulation 

Control 
type 

1 

Check the 
following 

variables are 
stable 

Thermal power  Check Thermal power 1.59 MWt Overview x  

Neutron power  Check Neutron power 0% Overview x  

SUR  Check SUR 0 dpm Rod Position Controls x  

Primary temperature Check Primary temperature ~ 248 ℃ Overview x  

Primary pressure Check Primary pressure 15.5 MPa. Overview x  

Primary level  Check Primary level 23% Overview x  

FW flow Check FW flow 0.02 kg/s Overview x  

2 

Ensure proper 
status of the 
main plant 

controls 

Plant mode in Reactor Leading 
mode Ensure Plant mode Plant Mode selector in 

Reactor leading mode. RodPositionControl o Discrete 

Rod Control in Manual Change Rod control Rod control selector in 
Manual mode RodPositionControl o Discrete 

MSB is controlling Steam pressure Ensure  - - x  

FW system in Auto Ensure  FWSV13/ FWSV14 in 
Auto. Feedwater Control x  

CW and CNR systems in service Ensure  CW system in service Systems x  

FW control adjusting FW flow Ensure FW control valve FWSV13/FWSV14 in 
Auto Systems x  

3 Check alarm 
conditions exist 

Reactor trip Check  Alarm blinking Alarms x  

Turbine trip Check  Alarm blinking Alarms x  

Turning gear Check  Alarm blinking Alarms x  

Generator Breaker open 
  

Check  Alarm blinking Alarms x  

4 Reset reactor 
trip 

 Reset  Reactor trip alarm 
deactivates Trips  o Discrete 

5 
Check Boron 
concentration 

stable 
 Check   Core x  

6 

Withdraw 
shutdown bank 

A while 
monitoring 

neutron flux 

Monitor neutron flux Monitor   Rod Position Control x  

Ensure Bank A is selected Push  Back A is selected. Rod Position Control o Discrete 

Push OUT until Bank A is fully 
withdrawn 

Push 
Bank A position Shutdown rod position 

changes 

Rod Position Control o Discrete 

Monitor Rod Position Control x  

7 

Withdraw 
shutdown bank 

B while 
monitoring 

neutron flux 

Monitor neutron flux Monitor Source range power 
SUR 

Source Range power 
(RCSNP03_TR) begins 
to rise but stabilises or 

falls when rod 
movement stops. 

Rod Position Control x  

Ensure Bank B is selected Push 
Bank B position  

Back B is selected. Rod Position Control o Discrete 

Push OUT until Bank B is fully 
withdrawn Push Control Rod position 

changes. Rod Position Control o Discrete 

8 

Withdraw 
shutdown bank 

C while 
monitoring 

neutron flux 

Monitor neutron flux Monitor Source range power 
SUR 

Source Range power 
(RCSNP03_TR) begins 
to rise but stabilises or 

falls when rod 
movement stops. 

Rod Position Control x  

Ensure Bank C is selected Push 
Bank C position  

Back C is selected. Rod Position Control o Discrete 

Push OUT until Bank C is fully 
withdrawn  

Push Control Rod position 
changes. Rod Position Control o Discrete 

9 Dilute RCS for 
Criticality  

Introduce the new Boron 
concentration setpoint (max 20 

ppm per badge). 

Introdu-
ce 

Boron concentration 
SUR 

Introduced values appear 
correctly. Core o Discrete 

Place selector in 'Dilution' Place Selector state 
SUR 

Boron concentration 
begins to lower Core o Discrete 

Check Boron concentration 
decreases to the Boron 
concentration setpoint. 

Check 

Boron concentration 
SUR 

Boron concentration 
begins to lower Core x  

Neutron power 
SUR 

When critical, neutron 
power RCSNP01_TR) 

rises slowly without 
Control Rod movement. 

Core x  

Repeat changing concentration 
setpoint above until Neutron flux 
slowly rises without Control Rod 

movement. 

Repeat 

Boron concentration 
Neutron power 

Reactivity 
SUR 

Criticality observed 
Point of Adding Heat 

occurs when 
Intermediate Range ~ 

10E-8. 
SUR should not exceed 

a sustained 0.5 dpm. 

Core 
Rod Position Control o Continuous 

Raise Reactor power to 8%  Raise Boron concentration Neutron power stabilises Core o Continuous 
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Figure 1. An overview of the power increase 

automation algorithm. 
 

3.2.1. Design of network architecture using PPO 
In this study, the PPO algorithm was specifically 

applied to Step 9. Figure 2 illustrates the network 
architecture of the PPO algorithm, which is composed of 
a critic and an actor agent, both constructed using linear 
layers. The algorithm takes four key variables as inputs: 
1) reactor power, 2) boron concentration, 3) SUR, and 4) 
total reactivity. These variables are essential for 
monitoring during the power increase operation. The 
PPO algorithm analyzes the current states of these 
variables and selects the action with the highest 
probability of successfully achieving the operational goal. 
The available actions for managing the boron dilution 
process include: 1) maintaining the current state (Stay), 
2) decreasing boron concentration by 1 ppm, 3) 
decreasing by 2 ppm, and 4) decreasing by 5 ppm. To 
minimize the frequency of adjustments and maintain 
stability, control signals are generated at 30-second 
intervals. 

 

 

Figure 2. A network architecture of PPO algorithm 
for the boron dilution operation (Step 9). 

 
3.2.2. Training of PPO algorithm 

The training of the PPO algorithm was conducted over 
2,500 episodes, as shown in Figure 3. Initially, the 

rewards exhibit significant variability, reflecting the 
learning agent's exploration phase. As training 
progresses, the rewards generally increase, indicating the 
agent's improving performance. While training, it was 
observed that the PPO algorithm successfully maintained 
reactor power at 8% when it achieved a cumulative 
reward of approximately 1,000 points. As the episodes 
progressed, the PPO algorithm learned that maintaining 
the reactor power at 8% for a longer duration resulted in 
higher rewards. As a result, the PPO algorithm learned 
the strategy to reach 8% quickly while keeping SUR, 
thereby optimizing its performance over time. 

 

 

Figure 3. The cumulative reward of the PPO 
algorithm per episode. 

 
3.3. Experiment Results  

This section presents the results of real-time testing 
conducted by integrating the developed power increase 
automation algorithm with the iPWR simulator. Figure 4 
illustrates the changes in reactor and electrical power 
during the automated power increase operation from 0% 
to 100% reactor power. Figure 5 shows the control 
signals generated by the automation algorithm 
throughout the operation. 

In the initial phase of the power increase operation, 
from 0 to approximately 2,000 seconds, the control rods 
were fully withdrawn by the If-then logic. From 2,000 to 
15,000 seconds, the reinforcement learning algorithm 
took over the operation, increasing the reactor power to 
around 8% while maintaining SUR within the 
operational constraint of 0.5 dpm. Once the reactor 
power exceeded 10%, the If-then logic resumed control 
again, ensuring a stable increase to 100% reactor power 
and 45 MWe electrical output. 

 

PPO Algorithm

Critic Agent

Actor Agent

iPWR Simulator

Hidden
Layer

(64 Nodes)

Input
Layer

(4 Nodes * 2)

- Reactor Power
- Boron Concentration
- Start Up Rate
- Total Reactivity

[t sec]

[t - 30 sec]

Output
Layer

(3 Nodes)
Selected Action

Get Plant
Information

• Stay Boron Concentration

• -1 ppm Boron Concentration Reduction

• -2 ppm Boron Concentration Reduction

Hidden
Layer

(64 Nodes)

Input
Layer

(4 Nodes * 2)

[t sec]

[t - 30 sec] Output
Layer

(1 Nodes)

• Expected Value

Reward Algorithm • Reward (State Estimation)

Actor
Update

Advantage
Calculation

Clipping
Ration

Critic
Update

• -5 ppm Boron Concentration Reduction



Transactions of the Korean Nuclear Society Autumn Meeting 
Changwon, Korea, October 24-25, 2024 

 
 

 

Figure 4. Changes in reactor and electrical output 
from 0% to 100%. 

 

 

Figure 5. Discrete/continuous control results from 
0% to 100%. 

 
3. Conclusion 

 
In this study, the power increase automation algorithm 

for SMR was suggested and validated using an iPWR 
simulator. The automation strategy was divided into 
discrete and continuous control modules. The discrete 
control tasks, which were triggered by specific 
conditions, were automated using If-then logic, while 
continuous control tasks, requiring real-time adjustments 
and adaptive decision-making, were managed using the 
Proximal Policy Optimization (PPO) algorithm. The 
validation of the proposed automation algorithm was 
demonstrated through a series of real-time simulations.  

The results showed that the discrete control module 
successfully managed initial control tasks, such as the 
full withdrawal of control rods, while the continuous 
control module, powered by reinforcement learning, 
optimized reactor power increases, maintaining stability 
and adhering to operational constraints. This successful 
integration and performance of the power increase 

automation algorithm highlight its potential to enhance 
SMR operations and reduce operator workload. Building 
on the findings of this study, future research will focus 
on further optimizing the algorithm for the multi-module 
power increase operations in SMRs. 
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