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 The Monte Carlo (MC) method 

– Simulates neutron transport in a stochastic manner to obtain a solution  

     with some uncertainty (variance) 

  Samples are inherently correlated cycle-wise in MC methods 

 Causes underestimation of the variance 

  

 Improved Deterministic Truncation of Monte Carlo (iDTMC) 

– A hybrid stochastic/deterministic MC acceleration method 

• Partial Current-based Coarse Mesh Finite Difference (p-CMFD) method 

 Accelerates convergence of fission source distribution (FSD) 

• Partial Current-based Fine Mesh Finite Difference (p-FMFD) method 

 Obtains pin-wise solution 

  Correlation becomes stronger in iDTMC 

  Even more worse underestimation of the variance! 

  

 In this work, new methods for estimating the real variance of iDTMC method are studied: 

 using the Spectral Analysis method and Autoregressive (1) model 
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 The iDTMC method 

- p-CMFD: Accelerates convergence of FSD 

- p-FMFD: Obtains pin-wise solution 

Inactive Cycle Active Cycle 

Skip cycles 

Coupled 

p-CMFD 

Decoupled 

p-FMFD 

MC 

cycle 

p-FMFD 

parameters 

accumulation 

Figure 1. Schematic diagram of iDTMC method 

p-CMFD p-FMFD 

Figure 2. Mesh configuration for  

p-CMFD and p-FMFD calculations 
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 The iDTMC method 

- p-CMFD: Accelerates convergence of FSD 

1) The one-group neutron balance equation is solved using constants from the higher-order MC solution 

 
𝐴𝑠

𝑉𝑖
(𝐽𝑠1 − 𝐽𝑠0)

𝑠

+ Σ𝑎
𝑖 𝜙𝑖 =

1

𝑘𝑒𝑓𝑓
𝑣Σ𝑓

𝑖 𝜙𝑖 

𝐽𝑠1 = 𝐽𝑠1
+ − 𝐽𝑠1

− = −𝐷 𝑠1 𝜙𝑖+1 − 𝜙𝑖 + 𝐷 𝑠1
+ 𝜙𝑖 − 𝐷 𝑠1

− 𝜙𝑖+1 

𝐷 𝑠1 =
1

Δ𝑖

2𝐷𝑖𝐷𝑖+1

𝐷𝑖+𝐷𝑖+1
 , 𝐷 𝑠1

± =
𝐽𝑠1

𝑀𝐶±±𝐷 𝑠1(𝜙𝑖+1
𝑀𝐶−𝜙𝑖

𝑀𝐶)/2

𝜙
𝑖+

1
2±

1
2

𝑀𝐶  

2) Update FSD of MC 
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 The iDTMC method 

- p-FMFD: Obtains pin-wise solution 

 
𝐴𝑠

𝑉𝑖
(𝐽𝑠1 − 𝐽𝑠0)

𝑠

+ Σ𝑎
𝑖 𝜙𝑖 =

1

𝑘𝑒𝑓𝑓
𝑣Σ𝑓

𝑖 𝜙𝑖 

 

- Determining uncertainty 

1) Using the accumulated parameters from previous cycles, additional parameters are sampled. 

  XSs, diffusion coefficients, initial flux distribution etc. 

2) The same neutron balance equation is solved multiple times using these new parameters and the 

variance of theses solutions is used as the uncertainty for the iDTMC solution. 

 

 

 How are the new parameters sampled? 
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 Current method for sampling parameters 

  Correlated sampling 

– p-FMFD parameters (e.g., XSs) have strong 

correlation by reaction type, cycle, cell etc. 

 

1) Sample p-FMFD parameters from probability 

density functions using correlated sampling 

 

 

 

 

2) Generate perturbed eigenvalue problems 

(iteration is needed to match the correlation matrix) 

3) Estimate real variance by either solving the 

perturbated problems or using 1st -order perturbation 

theory 

 

Tally and accumulate  

FMFD parameters 

Discretize PDF & CDF 

Correlated XS Sampling 

Perturbed FMFD parameters 

Perturbed eigenvalue problem 

Variance Estimation 

iDTMC variance calculation 

<Correlation Matrix> 

𝐶 =
1

𝜎𝑋𝜎𝑌

1 𝐶𝑜𝑣(Σ𝑡 , Σ𝑎) 𝐶𝑜𝑣(Σ𝑡 , 𝜈Σ𝑓)

𝐶𝑜𝑣(Σ𝑡 , Σ𝑎) 1 𝐶𝑜𝑣(Σ𝑎 , 𝜈Σ𝑓)

𝐶𝑜𝑣(Σ𝑡 , 𝜈Σ𝑓) 𝐶𝑜𝑣(Σ𝑎 , 𝜈Σ𝑓) 1
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 Limitations of the current method 

– While the estimated variance is closer to the real variance, significant cycle-wise correlation of the 

sampled parameters is observed from Spectral Analysis Method (SAM) based analysis. 

 

 

 

 

 

 

 

 

 

 

 

 Cycle-wise correlation is the main factor behind underestimation of the variance in MC 

methods! 
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 New method for sampling parameters 

– Cycle-wise uncorrelated parameters are sampled for the variance estimation 

  

 Autoregressive (1) model 

– Samples of 𝑋 taken from consecutive cycles (… , 𝑋𝑡−1, 𝑋𝑡, 𝑋𝑡+1, …) can be seen as an Autoregressive 

(AR) process 

 

– First-order AR model (AR (1)) of 𝑋 

 

 (𝑋𝑡 − 𝜇) = 𝜙 𝑋𝑡−1 − 𝜇 + 𝑍𝑡 0, 𝜎2  

• 𝜇: the mean of 𝑋 

• 𝜙: the correlation coefficient for the samples 

• 𝜎2: the variance of the Gaussian white noise 𝑍𝑡 
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 Autoregressive (1) model 

– Samples of 𝑋 taken from consecutive cycles (… , 𝑋𝑡−1, 𝑋𝑡, 𝑋𝑡+1, …) can be seen as an Autoregressive 

(AR) process 

 

– First-order AR model (AR (1)) of 𝑋 

 

 (𝑋𝑡 − 𝜇) = 𝜙 𝑋𝑡−1 − 𝜇 + 𝑍𝑡 0, 𝜎2  

• 𝜇: the mean of 𝑋 

• 𝜙: the correlation coefficient for the samples 

• 𝜎2: the variance of the Gaussian white noise 𝑍𝑡 

 

– AR (1) model parameter estimators: 

 • Least Square Estimator (LSE) 

1) Assume 𝜎2 is small 

2) Needs large number of samples 

 Not appropriate for iDTMC!  

 

• Maximum Likelihood Estimator (MLE) 

  Can be used with fewer samples 
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 Autoregressive (1) model 

 (𝑋𝑡 − 𝜇) = 𝜙 𝑋𝑡−1 − 𝜇 + 𝑍𝑡 0, 𝜎2  

• 𝜇: the mean of 𝑋 

• 𝜙: the correlation coefficient for the samples 

• 𝜎2: the variance of the Gaussian white noise 𝑍𝑡 

 

 <Parameter Estimation with MLE> 

– For MLE, for parameter 𝜃 = (𝜇, 𝜙, 𝜎2), likelihood function is: 

 𝑙𝑜𝑔𝐿 𝜃 = −
1

2
log

2𝜋𝜎2

1−𝜙2 −
𝑌1−

𝑐

1−𝜙

2

2𝜎2

1−𝜙2

−
T−1

2
log 2𝜋𝜎2 −  

𝑌𝑡−𝑐−𝜙𝑌𝑡−1
2

2𝜎2
𝑇
𝑡=2  

 𝑐 = 1 − 𝜙 𝜇 

– With the likelihood function, we may estimate parameters 𝜃 : 

𝑑(𝑙𝑜𝑔𝐿 𝜃 )

𝑑𝜃 
= 0 

– The bisection method is used to obtain the parameters that satisfy the above equation 
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 New method: real variance estimation using AR (1) model 

– From the AR (1) model, tth cycle parameter could be estimated with accumulated parameters as: 

 𝑋𝑡 − 𝜇 = 𝜙 𝑋𝑡−1 − 𝜇 + 𝑍𝑡(0, 𝜎2) 

– When we set 𝜙 to 0, we can sample cycle-wise uncorrelated parameters without iteration: 

 𝑋𝑡
𝑢𝑛𝑐𝑜𝑟𝑟 = 𝜇 + 𝑍𝑡(0, 𝜎2) 

Figure 9. Schematic of real variance estimation using AR(1) model to produce 

cycle-wise uncorrelated parameters in IDTMC method 

Tally and accumulate  

FMFD parameters 

Parameter Sampling 

Perturbed FMFD parameters 

Perturbed eigenvalue problems 

Variance Estimation 

iDTMC variance calculation 

Independent URN by LHS 

Cycle-wise Uncorrelated 

Shift mean and variance to 

AR(1) model 
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 Numerical Results 
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 SMR model 

– SMR model 

• FA1: 17-by-17 FA, Gd+U oxide 

• FA2: 17-by-17 FA, U oxide 

• 10 axial nodes 

– 1.5e+6 histories 

– 30 inactive and 10 active cycles 

– First 15 inactive cycles are skipped 
Figure 9. Cross-sectional (left) and side (right) view of the SMR model 

Geometry Detail 

Number of FA1 16 

Number of FA2 21 

Fuel pellet radius 0.5cm 

Pin pitch 1.23cm 

Cladding Thickness 0.3mm 

Material Specification 

U enrichment , U oxide density 3.8 w/o, 10.4 g/cm3 

Gd weight fraction, Gd+U oxide density 4%, 10.28 g/cm3 

Cladding material (density) Zircaloy (6.5 g/cm3) 

Reflector material (density) H2O (0.9 g/cm3) 

Temperature 294 K 
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 Cycle-wise Correlation Coefficient 

– Correlation coefficients obtained from AR (1) model 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Histogram of correlation coefficient of total 

cross-section at 5th axial plane 

Figure 10. Correlation coefficient of total cross-

section for each node at 5th axial plane 
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 Cross-section distribution by estimated AR (1) model 

Figure 12. Accumulated total cross-section at (43, 94, 5) 

and AR (1) model estimation at 10th active cycle 

Figure 13. Accumulated total cross-section at (39, 4, 5) and 

AR (1) model estimation at 10th active cycle 

[AR (1) parameters] 
𝜙 : 0.8787 

𝜇 : 0.9081 

𝜎2 : 8.0389e-5 

[AR (1) parameters] 
𝜙 : 0.3169 

𝜇 : 0.6299 

𝜎2 : 4.6713e-5 
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 Cross-section distribution by estimated AR (1) model 

  

  

  

  

  

  

  

  

  

  

 

– Real variance estimation using correlated sampling use accumulated CDF 

– Real variance estimation using AR (1) model use uncorrelated AR (1) model estimated CDF 

Figure 15. CDF of total cross-section at (39, 4, 5) compared with 

accumulated discrete CDF and AR (1) model estimation 

Figure 14. CDF of total cross-section at (43, 94, 5) compared with 

accumulated discrete CDF and AR (1) model estimation 
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 Estimated standard deviation of eigenvalue using AR (1) model 

– 5 MPI nodes (48 threads/node): Correlated Sampling –  82.20 min / AR (1) – 74.76 min 

 

 

 

 

 

 

 

 

 

 

 

 

 

– 45 batch calculation for real variance 

Figure 23. Standard deviation of apparent (black), 

correlated sampling (blue), AR (1) model (green), new AR 

(1) model (red) and real(magenta) 

Cycle 

[#] 

Correlated 

Sampling 
AR (1) Real 

s.d [pcm] s.d [pcm] s.d [pcm] 

31 13.80 19.06 15.93 

32 14.55 18.17 15.82 

33 13.53 16.78 15.77 

34 12.62 16.65 15.77 

35 12.95 17.38 15.75 

36 10.94 17.68 15.77 

37 14.47 16.76 15.65 

38 12.55 16.89 15.55 

39 12.35 15.94 15.43 

40 12.68 17.13 15.29 
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 Solving Problem 

– To observe the consistency of  real variance estimation method with AR (1) model, more precise 

calculation has been conducted 

– Same model with larger histories and cycles 

 

– SMR model 

• FA1: 17-by-17 FA, Gd+U oxide 

• FA2: 17-by-17 FA, U oxide 

• 10 axial nodes 

– 1.5e+6 → 2.0e+6 histories 

– 30 → 60 inactive and 10 →  20 active cycles 

– 15 → 30 cycles are skipped and accumulated 
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 Cycle-wise Correlation Coefficient 

– Correlation coefficients obtained from AR (1) model 

 

 

 

 

 

 

 

 

 

 

 

 → Higher cycle-wise correlation estimated for increased cycles and histories 

Figure 25. Histogram of correlation coefficient of total 

cross-section at 5th axial plane 

Figure 24. Correlation coefficient of total cross-

section for each node at 5th axial plane 
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 Cross-section distribution by estimated AR (1) model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

– Overall estimations show higher correlation coefficient and lower variance 

Figure 26. Accumulated total cross-section at (43, 94, 5) 

and AR (1) model estimation at 20th active cycle 

Figure 27. Accumulated total cross-section at (39, 4, 5) and 

AR (1) model estimation at 10th active cycle 

[AR (1) parameters] 
𝜙 : 0.7548 

𝜇 : 0.8903 

𝜎2 : 4.3158e-5 

[AR (1) parameters] 
𝜙 : 0.9532 

𝜇 : 0.6411 

𝜎2 : 4.3302e-5 
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 Estimated standard deviation of eigenvalue using AR (1) model 

– 5 MPI nodes (40 threads/node): Correlated Sampling – 209.94 min / AR (1) – 208.88 min 

 

 

 

 

 

 

 

 

 

 

 

 

– Batch calculation result from 25 batch calculation 

– Maximum iteration number for correlated sampling is 3 

Cycle 

[#] 

Correlated 

Sampling 
AR (1) Real 

s.d [pcm] s.d [pcm] s.d [pcm] 

61 11.29 12.64 8.53 

62 10.47 12.91 8.33 

63 10.71 10.75 8.35 

… 

75 9.52 10.58 8.27 

76 8.3 10.36 8.26 

77 8.57 10.87 8.22 

78 8.39 10.64 8.19 

79 8.98 9.39 8.14 

80 9.66 10.15 8.29 

Figure 28. Standard deviation of real(blue), 

apparent(orange), correlated sampling(green), AR (1) 

model(red), and AR (1)* model(purple)  
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 Real variance estimation using SAM 

– Accumulated inactive & active cycle’s p-FMFD parameters → estimate AR(1) model’s parameters 

 (1) Using AR(1) model, cycle-wise correlated parameters reproduced without solving MC 

 (2) Solve with p-FMFD or use 1st order perturbation theory for correlated parameters 

 (3) Use SAM for the eigenvalue of active and AR(1) estimated results to estimate real variance 

  

  

  

  

  

  

  

  

  

– Estimate real variance without model or estimate autocovariance functions 

– Similar or shorter calculation time used to estimate real variance 

Inactive Cycle Active Cycle 

Skip cycles 

Coupled 

p-CMFD 

Decoupled 

p-FMFD 

MC 

cycle 

p-FMFD 

parameters 

accumulation 

AR(1) Model 

p-FMFD 

or FPT 

Figure 7. Schematic diagram of real variance estimation using SAM in iDTMC method 
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 Estimated standard deviation of eigenvalue using SAM 

– 5 MPI nodes (48 threads/node): Correlated Sampling –  82.20 min / SAM – 78.41 min 

 

 

 

 

 

 

 

 

 

 

 

– Real variance is calculated from 45 batch calculation 

– Maximum iteration number for correlated sampling is 3 

– 100 samples were propagated with AR (1) model and analysed with SAM 

Cycle 

[#] 

Correlated 

Sampling 

SAM 

(M=1) 

SAM 

(M=2) 

SAM 

(M=3) 
Real 

s.d [pcm] s.d [pcm] s.d [pcm] s.d [pcm] s.d [pcm] 

31 13.80 18.75 13.76 11.36 15.93 

32 14.55 17.91 15.12 12.41 15.82 

33 13.53 15.94 12.12 10.63 15.77 

34 12.62 5.207 5.124 6.843 15.77 

35 12.95 9.479 7.398 6.892 15.75 

36 10.94 12.81 10.87 14.22 15.77 

37 14.47 5.617 7.033 6.203 15.65 

38 12.55 9.817 7.431 6.142 15.55 

39 12.35 19.65 14.57 12.35 15.43 

40 12.68 9.811 9.731 8.080 15.29 

Figure 10. Standard deviation of apparent (black), correlated 

sampling (blue), SAM for M=1 (red), M=2 (green), M=3 (cyan) 

and real(magenta) for 100 propagated samples 
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 Estimated standard deviation of eigenvalue using SAM 

– 5 MPI nodes (48 threads/node): Correlated Sampling –  82.20 min / SAM – 172.53 min 

 

 

 

 

 

 

 

 

 

 

 

– Real variance is calculated from 45 batch calculation 

– Maximum iteration number for correlated sampling is 3 

– 1000 samples were propagated with AR (1) model and analysed with SAM 

Cycle 

[#] 

Correlated 

Sampling 

SAM 

(M=1) 

SAM 

(M=2) 

SAM 

(M=3) 
Real 

s.d [pcm] s.d [pcm] s.d [pcm] s.d [pcm] s.d [pcm] 

31 13.80 5.204 4.010 4.977 15.93 

32 14.55 5.641 6.596 5.676 15.82 

33 13.53 3.964 2.976 3.078 15.77 

34 12.62 9.637 7.212 5.989 15.77 

35 12.95 4.785 5.275 6.618 15.75 

36 10.94 2.771 4.818 4.238 15.77 

37 14.47 1.221 2.132 1.836 15.65 

38 12.55 4.383 7.182 6.340 15.55 

39 12.35 4.306 5.236 4.426 15.43 

40 12.68 1.312 3.042 3.040 15.29 

Figure 11. Standard deviation of apparent (black), correlated 

sampling (blue), SAM for M=1 (red), M=2 (green), M=3 (cyan) 

and real(magenta) for 1000 propagated samples 
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 Periodogram from SAM 

  

  

  

  

  

  

  

  

  

  

  

  

– As we expected from Taylor-series analysis: 

• High variance of estimation occurred when we use 100 propagated samples 

• High bias of estimation occurred when we use 1000 propagated samples 

Figure 12. Periodogram for cycle 37, 38, 39, 40 when the 

propagated sample number is 100 

Figure 13. Periodogram for cycle 37, 38, 39, 40 when the 

propagated sample number is 1000 
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 Real variance estimation using AR (1) model 

– From the AR (1) model, tth parameter could be estimated as: 

 𝑌𝑡 − 𝜇 = 𝜙 𝑌𝑡−1 − 𝜇 + 𝑍𝑡(0, 𝜎2) 

– When we replace 𝜙 to 0, we could sample cycle-wise uncorrelated parameters: 

 𝑌𝑡
𝑢𝑛𝑐𝑜𝑟𝑟 = 𝜇 + 𝑍𝑡(0, 𝜎2) 

Figure 8. Schematic of real variance estimation using AR(1) model to produce 

cycle-wise uncorrelated parameters in IDTMC method 

Tally and accumulate  

FMFD parameters 

Parameter Sampling 

Perturbed FMFD parameters 

Perturbed eigenvalue problems 

Variance Estimation 

iDTMC variance calculation 

Independent URN by LHS 

Inverse CDF of normal dist 

Correlation matrix for XS 

Cholesky Decomposition 

Cycle-wise Uncorrelated 

XS Correlated Sampling 

Shift mean and variance to 

AR(1) model 
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Real variance estimation using AR (1) model w/ parameter-wise correlation 
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 Estimated standard deviation of eigenvalue using AR (1) model 

– 5 MPI nodes (48 threads/node): Correlated Sampling –  82.20 min / AR (1) – 73.88 min 

 

 

 

 

 

 

 

 

 

 

 

 

– Batch calculation result from 45 batch calculation 

– Maximum iteration number for correlated sampling is 3 

Cycle 

[#] 

Correlated 

Sampling 
AR (1) Real 

s.d [pcm] s.d [pcm] s.d [pcm] 

31 13.80 9.96 15.93 

32 14.55 10.30 15.82 

33 13.53 10.19 15.77 

34 12.62 9.62 15.77 

35 12.95 9.03 15.75 

36 10.94 8.81 15.77 

37 14.47 7.94 15.65 

38 12.55 8.21 15.55 

39 12.35 7.91 15.43 

40 12.68 8.39 15.29 
Figure 16. Standard deviation of apparent (black), 

correlated sampling (blue), AR (1) model (green) and 

real(magenta) 
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Summary and Conclusion 

 Limitations of the previous method for p-FMFD parameter sampling 

– Cycle-wise correlation of the sampled parameters is observed, which is a well-established cause for 

various underestimation. 

  

 New parameter sampling scheme for accurate variance estimation 

– A new sampling method based on the AR (1) model that explicitly removes cycle-wise correlation 

from the sampling process was developed and implemented. 

– The variances estimated with this method were found to be quite similar to the real variance. 

 

 Future directions 

– Estimation of the real variance of the power distribution using the AR (1) model is in progress. 

– Application and verification of the AR (1) estimation for non-LWR problems. 

29 
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Thank You 

30 

Any Questions? 
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 Backup Slide 
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 Correlation coefficient of correction factors, 𝑫 𝒑 

– Correlation coefficient, 𝜌 X, Y =
𝐶𝑜𝑣 𝑋,𝑌

𝜎𝑋𝜎𝑌
=

𝐸 𝑋𝑌 −𝐸 𝑋 𝐸[𝑌]

𝜎𝑋𝜎𝑌
 

– All direction is outgoing direction of each node 

 

Correlation coefficient of correction factors 

32 

Figure 29. Schematic of surface 

numbering and current direction of 

specific node  

𝐽1
− 

5 

1 

𝑥 

𝑦 

𝑧 

4 

3 
2 

6 
𝐽2
+ 

Index 1 2 3 4 5 6 

𝐷 𝑠
± 𝐷 1

− 𝐷 2
+ 𝐷 3

− 𝐷 4
+ 𝐷 5

− 𝐷 6
+ 

Figure 30. Heatmap and histogram of correlation coefficient with respect to node (60, 60, 6) and index 1 
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 Correlation coefficient of correction factors, 𝑫 𝒑 

 

Correlation coefficient of correction factors 
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Figure 29. Schematic of surface numbering 

and current direction of specific node  

𝐽1
− 

5 

1 

𝑥 

𝑦 

𝑧 

4 

3 
2 

6 
𝐽2
+ 

Index 1 2 3 4 5 6 

𝐷 𝑠
± 𝐷 1

− 𝐷 2
+ 𝐷 3

− 𝐷 4
+ 𝐷 5

− 𝐷 6
+ 

Figure 31. Heatmap and histogram of correlation coefficient with respect to node (1, 60, 6) and index 1 
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Figure 29. Schematic of surface numbering 

and current direction of specific node  
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Figure 32. Heatmap and histogram of correlation coefficient with respect to node (60, 60, 2) and index 1 
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Figure 29. Schematic of surface numbering 

and current direction of specific node  
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Figure 33. Heatmap and histogram of correlation coefficient with respect to node (60, 60, 7) and index 2 
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 Correlation coefficient of correction factors, 𝑫 𝒑 
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Figure 29. Schematic of surface numbering 

and current direction of specific node  
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Figure 34. Heatmap and histogram of correlation coefficient with respect to node (60, 60, 0) and index 5 
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 Estimated standard deviation of eigenvalue using AR (1) model 

– 5 MPI nodes (48 threads/node): Correlated Sampling –  82.20 min / AR (1) – 74.76 min 

 

 

 

 

 

 

 

 

 

 

 

 

 

– New method(AR (1)*) does not consider correlation matrix of parameters 

Figure 17. Standard deviation of apparent (black), 

correlated sampling (blue), AR (1) model (green), new AR 

(1) model (red) and real(magenta) 

Cycle 

[#] 

Correlated 

Sampling 
AR (1) AR (1)* Real 

s.d [pcm] s.d [pcm] s.d [pcm] s.d [pcm] 

31 13.80 9.96 19.06 15.93 

32 14.55 10.30 18.17 15.82 

33 13.53 10.19 16.78 15.77 

34 12.62 9.62 16.65 15.77 

35 12.95 9.03 17.38 15.75 

36 10.94 8.81 17.68 15.77 

37 14.47 7.94 16.76 15.65 

38 12.55 8.21 16.89 15.55 

39 12.35 7.91 15.94 15.43 

40 12.68 8.39 17.13 15.29 
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 Correlated Sampling 

– p-FMFD parameters have strong correlation by reaction types, cycles, cells, etc 

 (1) Reproduce p-FMFD parameters with correlated sampling and probability density function 

 (2) Generate perturbed eigenvalue problems (iteration is needed to match the correlation matrix) 

 (3) Solve the problems with p-FMFD and estimate real variance or use 1st order perturbation theory 

Tally and accumulate  

FMFD parameters 

Discretize PDF & CDF 

Parameter Sampling 

Perturbed FMFD parameters 

Perturbed eigenvalue problem 

Variance Estimation 

Independent URN by LHS 

Inverse CDF of normal 

Correlation matrix for XS 

Cholesky Decomposition 

Correlated factors 

CDF of normal dist 

Inverse CDF of parameter 

iDTMC variance calculation 
Correlated Sampling 

Figure 2. Schematic of real variance estimation in the iDTMC method 

<Correlation Matrix> 

𝐶 =

1 𝜌(Σ𝑡 , Σ𝑎) 𝜌(Σ𝑡 , 𝜈Σ𝑓)

𝜌(Σ𝑡 , Σ𝑎) 1 𝜌(Σ𝑎 , 𝜈Σ𝑓)

𝜌(Σ𝑡 , 𝜈Σ𝑓) 𝜌(Σ𝑎 , 𝜈Σ𝑓) 1

 

𝜌 X, Y =
𝐶𝑜𝑣 𝑋, 𝑌

𝜎𝑋𝜎𝑌
=

𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸[𝑌]

𝜎𝑋𝜎𝑌
 

 

<Cholesky Decomposition> 

𝐶 = 𝐿𝐿𝑇 

 

For the uncorrelated normal sample X, 

𝐸 𝑋𝑋𝑇 = 𝐼 

𝐸 𝐿𝑋𝑋𝑇𝐿𝑇 = 𝐿𝐸 𝑋𝑋𝑇 𝐿𝑇 = 𝐿𝐿𝑇 = 𝐶 

So, we multiply L to X to form correlated URN. 
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Autoregressive (1) model and Spectral Analysis method (2/3) 
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 Spectral Analysis Method 

– Spectral Analysis Method (SAM) used in noise signals and stationary time series analyses 

– Let 𝑋𝑡 be tallied value in the tth  active cycle, sample mean 𝑋 =  𝑋𝑡
𝑇
𝑡=1 , real mean 𝜇 

• Autocovariance: 𝛾ℎ = 𝐶𝑜𝑣 𝑋𝑡, 𝑋𝑡+ℎ = 𝐸 𝑋𝑡𝑋𝑡+ℎ − 𝜇2 

• Sample autocovariance: 𝛾 ℎ =
1

𝑇−ℎ
 (𝑋𝑡 − 𝑋 )(𝑋𝑡+ℎ − 𝑋 )𝑇−ℎ

𝑡=1  

• Variance of sample mean: 𝑉 𝑋 =
1

𝑇2 𝑉  𝑋𝑡
𝑇
𝑡=1 =

1

𝑇2
  𝛾(𝑖−𝑗)

𝑇
𝑗=1

𝑇
𝑖=1 =

1

𝑇
 1 −

ℎ

𝑇
𝛾ℎ

𝑇
ℎ=−𝑇  

– For 𝑇 → ∞, 𝑉 𝑇𝑋 →  𝛾ℎ
∞
ℎ=−∞  and sample deviation 𝜎 2 =

1

𝑇(𝑇−1)
 𝑋𝑡

2𝑇
𝑡=1 −

 𝑋𝑡
𝑇
𝑡=1

2

𝑇
=

𝛾 0

𝑇
: 

𝑉 𝑋 

𝜎 2 =
𝑉 𝑇𝑋 

𝛾 0
→

 𝛾ℎ
∞
ℎ=−∞

𝛾0
 

– Autocovariance structure of random process is equivalent to certain frequency pattern: 

 𝑓 𝜔 =
1

2𝜋
 𝛾ℎ𝑒𝑖𝜔ℎ∞

ℎ=−∞ , 𝜔 ∈ (−𝜋, 𝜋) 

– Then, with the spectral density 𝑓(𝜔), 𝑽[𝑿 ] ≈
𝟐𝝅𝒇 𝟎

𝑻
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Autoregressive (1) model and Spectral Analysis method (3/3) 
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 Spectral Analysis Method 

– With periodogram 𝐼 𝜔𝑘 =
1

2𝜋𝑇
 𝑋𝑡𝑒

−𝑖𝑡𝜔𝑘𝑇
𝑡=1  where 𝜔𝑘 =

2𝜋𝑘

𝑇
, estimate 𝑓 0 =

1

𝑀
 𝐼(𝜔𝑚)𝑀

𝑚=1  

– So, we could estimate real variance 𝑽 𝑿 =
𝟐𝝅

𝑴𝑻
 𝑰(𝝎𝒌)𝑴

𝒌=𝟏  

  

– From the definition we could derive 𝐸[𝐼(𝜔𝑘)] → 𝑓 𝜔𝑘  for 𝜔𝑘 ≠ 0 

– With the Taylor series analysis, bias and variance of 𝑓 (0) could be approximated: 

 𝐸 𝑓 0 − 𝑓 0 ≈
𝜋𝑓′ 0 𝑀+1

𝑇
 

 𝑉 𝑓 0 ≈
1

𝑀2
 𝑓 𝑀

𝑚=1 (𝜔𝑚) 

  

– Trade-off between the bias and variance depending on M 

– For accurate approximation, large number of active cycles(T) are needed 
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Real variance estimation using AR (1) model and SAM (1/4) 
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 Previous Research of Real Variance Estimation of MC/p-CMFD with SAM 

– (HyeonTae Kim, 2020) Real Variance Estimation in Monte Carlo Criticality Calculation Accelerated 

by p-CMFD Feedback Using Spectral Analysis Method 

 

 

 

 

 

 

 

 

 

 

– SAM accurately estimate real variance for simple one-dimensional and BEAVRS problem 

– To reduce bias and variance for 𝑓 (0), sufficient number of active cycles are required 

Figure 3. Comparisons of flux real SD, apparent SD, 

and SAM SDs (M=1, 5, 10, 20) from MC/p-CMFD 

Figure 4. Periodogram plot over discretized 

frequency from MC and MC/p-CMFD at x=0cm 


