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1. Introduction 
 

The Monte Carlo (MC) method is a highly accurate 
approach for reactor analysis, directly simulating neutron 
behavior with minimal assumptions. However, this 
accuracy comes with significant computational costs due 
to the need to simulate many neutron histories and cycles.  

The Improved Deterministic Truncation of Monte 
Carlo (iDTMC) method accelerates the MC method by 
integrating stochastic and deterministic techniques, 
enhancing efficiency and reducing computational 
demands[1]. 

Accurate uncertainty estimation remains crucial, as 
the inherent cycle correlation in MC simulations, 
especially in the iDTMC method, can lead to 
underestimated variance if not properly addressed. This 
study introduces two new methods for estimating the real 
variance of the iDTMC method using Spectral Analysis 
Method and Autoregressive (1) models. 
 

2. Methodology 
 
2.1. The iDTMC Method 

 
The iDTMC method employs p-CMFD to accelerate 

the convergence of the FSD during the inactive cycles 
and uses p-FMFD to generate pin-level reactor solutions 
during the active cycles. 

The p-CMFD method solves the one-group neutron 
balance equation, Eq. (1): 
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where 𝐴 is the surface area, 𝑉! is the volume of node 𝑖, 𝑠 
denotes the surface index, 𝜙  and 𝐽  are the flux and 
current, respectively, Σ represents cross section and the 
effective multiplication factor is denoted as 𝑘"## . The 
current across a specific surface is determined by the sum 
of partial currents. The primary difference between p-
CMFD and p-FMFD lies in the node size: p-CMFD 
considers subassemblies as nodes, whereas p-FMFD 
considers individual pins within the subassemblies as 
nodes. 

The overall iDTMC methodology is illustrated in Fig. 
1. After a few skip cycles, p-CMFD is applied during 
inactive cycles to accelerate the convergence of the 

fission source distribution (FSD). Once converged, the 
MC solution is truncated using p-FMFD, which is 
decoupled from MC to avoid instability. The parameters 
for p-FMFD during active cycles are accumulated from 
the inactive cycles. 

 

 
Figure 1. Schematic of the iDMTC method 

 
2.2. Real variance estimation using correlated sampling 

 
To estimate the real variance, a previously developed 

method using correlated sampling for accumulated 
FMFD parameters is employed [2]. 

For a desired number of samples, Uniform Random 
Numbers (URN) are generated using Latin Hypercube 
Sampling (LHS) to ensure a well-distributed set of 
pseudo-random numbers. These URN samples are then 
transformed into normally distributed random numbers. 

 
The normal samples are then correlated according to 

the correlation matrix of the accumulated parameters: 
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1 𝜌(Σ(, Σ%) 𝜌(Σ(, 𝜈Σ')

𝜌(Σ%, 𝜈Σ') 1 𝜌(Σ%, 𝜈Σ')
𝜌(Σ(, 𝜈Σ') 𝜌(Σ(, Σ%) 1

4	(2) 

 
while Σ$, Σ% and 𝜈Σ# are the accumulated total, 
absorption and 𝜈-fission cross sections, respectively, 
and 𝜌(𝑋, 𝑌) represents the correlation coefficient 
between variables X and Y, as calculated by Eq. (3).  
 

𝜌(𝑋, 𝑌) =
𝐶𝑜𝑣(𝑋, 𝑌)
𝜎)𝜎*

=
𝐸[𝑋𝑌] − 𝐸[𝑋]𝐸[𝑌]
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	(3) 

 
Cholesky decomposition is applied to incorporate the 

correlations into the normally distributed random 
samples, transforming the positive semi-definite matrix 
into a lower triangular matrix 𝐿 as follows: 

𝐶 = 𝐿𝐿+	(4) 
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Assuming that the normal samples are initially 
uncorrelated, the correlation matrix of the normal sample 
matrix 𝑋 is represented as: 

 
𝐸[𝑋𝑋+] = 𝐼,×,	(5) 

 
Multiplying 𝐿 by the samples results in a new correlation 
matrix, as shown in Eq. (6), matching the original 
correlation matrix we constructed: 
 

𝐶. = 𝐸[𝐿𝑋𝑋+𝐿+] = 𝐿𝐸[𝑋𝑋+]𝐿+ = 𝐿𝐿+ = 𝐶	(6) 
 

The correlated random samples are transformed back 
into uniformly distributed random numbers (URNs). 
These correlated URNs are then used to sample FMFD 
parameters from the discrete accumulated CDF. Since 
the samples may not be perfectly correlated, some 
iteration is required. Finally, these perturbed samples are 
used to estimate the real variance using first-order 
perturbation theory, optimizing computing time. 

Fig. 2 illustrates the entire procedure for real variance 
estimation using correlated sampling. This estimation 
method is shown to be effective for Light Water Reactor 
(LWR) type problems [2, 5]. 

Given that the iDTMC method accelerates FSD 
convergence and FMFD parameters are accumulated 
during the inactive cycles, there is likely a strong cycle-
wise correlation. To address this, we propose using an 
Autoregressive (AR) model and the Spectral Analysis 
Method (SAM) to improve real variance estimation. The 
first method uses an AR (1) model to estimate cycle-wise 
correlation coefficients, while the second reproduces 
cycle-wise correlated parameters and estimates variance 
with SAM 

 

 
Figure 2. Real variance estimation using correlated sampling 

 
2.3. Autoregressive (1) model 

Previous studies suggest that treating consecutive 
Monte Carlo (MC) samples as a subset of an 
Autoregressive (AR) model is an effective analytical 
approach [3]. A first-order AR (AR (1)) model, with a 
mean 𝜇, can be represented as follows: 

 
𝑋( − 𝜇 = 𝜙(𝑋(/# − 𝜇) + 𝑍((0, 𝜎0)	(7) 

 

Here, 𝑋$ represents the sample tallied from the tth cycle 
for the total 𝑇  active cycles, 𝜙  is the correlation 
coefficient, and 𝑍$  is the Gaussian white noise with a 
mean of 0 and a variance of 𝜎&.  

All parameters in the AR (1) model can be estimated 
using Maximum Likelihood Estimator (MLE). The log-
likelihood function of AR (1) model, denoted as 
𝑙𝑜𝑔𝐿(𝜙, 𝜇, 𝜎&), is expressed as: 
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By differentiating the log-likelihood function with 
respect to 𝜇, 𝜎& and 𝜙 and setting the derivatives to zero, 
we can estimate 𝜙8. With 𝜙8 in hand, we can then estimate 
the other parameters �̂� and 𝜎:&. 
 
2.4. Spectral Analysis Method 

 
The Spectral Analysis Method (SAM) is a technique 

used for analyzing noise signals and stationary time 
series. SAM can estimate real variance while inherently 
accounting for cycle-wise correlations [4]. 

Assuming that {𝑋$} is a stationary Gaussian process 
the autocovariance function, which describes the 
dependency between two cycles, is defined as: 

 
𝛾2 = 𝐶𝑜𝑣(𝑋(, 𝑋(32) = 𝐸(𝑋(, 𝑋(32) − 𝜇0	(9) 

 
where ℎ is the lag between two cycles, and 𝐸  denotes 
expectation. The sample autocovariance 𝛾:' , unbiased 
estimate for 𝛾', is given by: 
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1
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where 𝑋@ is sample mean, calculated as 𝑋@ = ∑ (!

)
)
$*+ . The 

real variance, can be expressed in terms of the 
autocovariance function: 
 

𝑣𝑎𝑟(𝑋Z) =
1
𝑇0 𝑣𝑎𝑟 ]!𝑋(

+

(1#

^ =
1
𝑇0 _!!𝛾("/5)

+

51#

+

"1#

`	(11) 

 
For large 𝑇, this simplifies to:  
 

𝑣𝑎𝑟a√𝑇𝑋Zc → ! 𝛾2

217

21/7

	(12) 

 
Since any autocovariance structure corresponds to a 

particular frequency pattern, we can establish the spectral 
density function 𝑓(𝜔) using the autocovariance function: 
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, 𝜔 ∈ (−𝜋, 𝜋)		(13) 

 
where 𝑖 = √−1. By evaluating 𝑓(𝜔) at 𝜔 = 0: 
 

𝑓(0) =
1
2𝜋 ! 𝛾2

7

21/7

	(14) 

 
Finally, combining Eq. (12) with Eq. (14), the real 
variance can be represented using the spectral density 
function for large 𝑇: 

 

𝑣𝑎𝑟(𝑋Z) ≈
2𝜋𝑓(0)
𝑇 	(15) 

 
Since the spectral density function cannot be 

determined directly, it must be estimated. The 
periodogram, which captures the frequency pattern of the 
samples, serves as a sample spectral density. The 
periodogram 𝐼(𝜔,) is defined as: 
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for frequency 𝜔, =

&-)
,

. Given that the zero-frequency 
value of the periodogram is biased and not a consistent 
estimator of 𝑓(0), we use a local average of periodogram 
ordinates near the zero frequency: 
 

𝑓k(0) =
1
𝑀 ! 𝐼(𝜔;)
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where 𝑀  is a positive integer that satisfies 𝑀 ≤ 𝑇 . 
Combining Eq. (15) and Eq. (17), we estimate the real 
variance using the periodogram: 
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Using a Taylor series analysis, the bias and variance 

of our zero-frequency spectral density function 
estimation are [5]: 
 

𝐸m𝑓k(0)n − 𝑓(0) ≈
𝜋𝑓.(0)(𝑀 + 1)
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By increasing 𝑀, the variance of the estimation can be 
reduced, but the bias will increase, indicating a trade-off. 
Moreover, many active cycles are crucial for minimizing 
the bias of the estimation. 
 
2.5. Two new methods to estimate real variance 

One new approach modifies the original method to 
create cycle-wise uncorrelated but parameter-wise 
correlated samples. Using an AR (1) model, the cycle-
wise correlation is removed by estimating the correlation 
coefficient and generating uncorrelated parameters. For 
Gaussian-distributed samples, multiplying by the 
Cholesky matrix achieves parameter-wise correlation 
without needing iterations. The schematic of this method 
is illustrated in Fig. 3. 

The second method combines the AR (1) model with 
the Spectral Analysis Method (SAM) to estimate real 
variance. Since the iDTMC method uses a limited 
number of active cycles, the resulting small sample size 
can lead to significant bias and variance in SAM 
estimates. To mitigate this, we use the AR (1) model to 
generate additional samples, enabling SAM to be applied 
with reduced bias and variance. The schematic of this 
method is shown in Fig. 4. 

 

 
Figure 3. Real variance estimation using AR (1) model 

 

 
Figure 4. Real variance estimation using AR (1) model and 

SAM 
 

3. Numerical Results 
 

For real variance estimation, we solved the same SMR 
problem with identical histories and cycles as in [2]. All 
the calculation has been done with 240 Intelâ Xeonâ 
Gold 6148 cores parallel calculation. 

 The estimation result using AR (1) model is shown in 
Fig. 5, alongside real, apparent, and current methods. 
Real variance was determined as 15.29 pcm using a 45-
batch calculation. The computing time for the current 
method was 82.20 minutes, while the new method 
required 73.88 minutes. By the 40th cycle, the estimated 
real standard deviation was 8.39 pcm, compared to 15.29 
pcm for the actual value and 12.68 pcm for the current 
method. Fig. 6 presents a heat map of the correlation 
coefficients at the center surface, using the AR (1) model. 

Results using the AR (1) model combined with the 
SAM are also shown in Fig. 5. For each active cycle, 100 
parameters were generated, with a computing time of 
78.41 minutes. At the 40th cycle, the estimated real 
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standard deviation was 9.81 pcm (M=1), 9.73 pcm 
(M=2), and 8.08 pcm (M=3). The periodogram for cycles 
37 to 40 is depicted in Fig. 7. 

We also tested with parameters from the AR (1) model 
without multiplying Cholesky matrix. The results, shown 
in Fig. 5 as ‘AR (1)* model’, had a computing time of 
74.76 minutes and estimation of 17.13 pcm at 40th cycle. 
 

 
Figure 5. Real (blue), apparent(orange), currently using(green) 

and AR (1) model (red), AR (1)* model(purple), SAM with 
M=1(brown), M=2(pink) and M=3(gray) estimated standard 

deviation by active cycle 
 

 
Figure 6. Heat map of total cross-section correlation 

coefficients calculated from AR (1) 
 

 
Figure 7. Periodogram from cycle 37(red), 38(green), 

39(orange) and 40(blue) 

4. Conclusions 
 

Based on the numerical results, we identified 
significant cycle-wise correlations across all nodes. To 
address this, we eliminated these correlations, estimated 
using accumulated parameters and the AR (1) model, 
when sampling parameters. Additionally, we attempted 
to replicate cycle-wise correlated parameters using the 
AR (1) model and estimate the real variance with the 
SAM. Among the methods tested, the AR (1) model 
without multiplying the Cholesky matrix produced the 
most accurate results. 

When estimating real variance using SAM with 
parameters adjusted by the Cholesky matrix, the 
periodogram revealed a lack of specific cycle-wise 
correlation, suggesting that the correlation matrix is 
influenced more by cycle-wise correlations than by 
parameter’s one. Consequently, we developed a new 
correlation matrix that excludes cycle-wise correlation 
influences, leading to improved variance estimation 
using the AR (1) model compared to the original one. 

These results suggest that the currently used 
correlation matrix may not effectively account for 
parameter-wise correlations and is overly influenced by 
cycle-wise correlations. Furthermore, the AR (1) model, 
when used without the Cholesky matrix, may offer a 
more accurate real variance estimation. Since the normal 
distribution does not require iterative processes to align 
with the original correlation, the computational time is 
reduced compared to the current method. Further 
research is necessary to confirm the reliability of AR (1) 
model. Additionally, exploring the correlation of other 
parameters, such as spatial correlations or correction 
factors in p-FMFD calculations, is needed for a more 
comprehensive understanding. 
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