Progress in Investigating the Characteristics of Neutron-Irradiated Germanium

Jinyu Kim*, Bo-Young Han, Gwang-Min Sun, Sung Hyo Lee, Seongpyo Hong

HANARO Utilization Division

Korea Atomic Energy Research Institute (KAERI)

October 24, 2024

KNS 2024 Fall

Introduction

- Applications of bolometers using NTD-Ge thermistors
 - Neutrinoless double beta $(0\nu\beta\beta)$ decay measurement (CUORE, CUPID (Italy), CROSS (Spain), TIN.TIN (India), etc.)
 - dark matter (WIMP) search (CUORE, EDELWEISS)
 - solar neutrino measurement
 - x-ray spectroscopy
- Goals
 - Production of NTD-Ge thermistor
 - 1. neutron irradiation \rightarrow doping (neutron transmutation doping, NTD)
 - 2. fabrication \rightarrow thermistor
 - Quality & quantity check for NTD-Ge thermistor

Bolometers using NTD-Ge Thermistor

Characteristics

Diagram of bolometer

- operating temperature: 10-100 mK
- low heat capacity: $C < 10^{-13} \text{ J/K}$
- temperature rise: ${\sim}10$ mK for 6 keV x-ray
- high thermal conductivity

- Advantages
 - high detection efficiency
 - low intrinsic background
 - good energy resolution (~5 keV for 2.62 MeV γ)

Energy resolution

Pulse from bolometer

Bolometer (CUORE)

Bolometer

(EDELWEISS)

NTD-Ge Thermistor

- Doping level: $10^{17} 10^{18} / \text{cm}^2$
- Advantages
 - high sensitivity
 - low specific heat
 - fast rise time
 - good doping uniformity (random isotope distribution)
 - precise control of doping concentration
- Production
 - Neutron irradiation
 - annealing to recover the fast neutron-induced damage in the lattice structure (e.g. 600 $^{\circ}\mathrm{C},$ 2 hr)
 - electrical contact (e.g. 100-nm-thick Au-Ge alloy (88% Au + 12% Ge))
 - annealing (e.g. 400 °C, 2 min., Ar atmosphere)
- NTD-Ge thermistor (CUORE)

Production homogenity & doping uniformity

Ge Samples

- Ge samples for testing neutron irradiation using research reactor HANARO at KAERI
- Samples from HPGe crystal (n-type, $\sim 10^{13}/{\rm cm^2})$
- Total 8 Ge samples (6 disks + 2 powder)
- Sample weight: 0.08 mg (powder) 0.8 g (disk)
- Ge sample (disk)

Ge sample (powder)

Neutron Irradiation using HANARO

- Transfer of samples between the lab and HANARO using pneumatic transfer system (PTS)
- Neutron irradiation holes in HANARO (PTS#1-3)
- The maximum irradiation time: 6 hr
- PTS facility

 Neutron irradiation holes in HANARO

• Averaged neutron fluxes for 30 MW of HANARO thermal power $[N/{
m cm^2}]$

Hole	Thermal	Epithermal	Fast
PTS#1	$4.80{\pm}0.02{\times}10^{13}$	$7.80{\pm}0.22{ imes}10^{11}$	$6.38{\pm}0.49{ imes}10^{10}$
PTS#2	$3.30{\pm}0.09{ imes}10^{13}$	$3.440{\pm}0.29{ imes}10^{11}$	$3.27{\pm}0.47{ imes}10^{10}$
PTS#3	$1.53{\pm}0.06{ imes}10^{14}$	$1.01{\pm}0.07{\times}10^{12}$	$9.78{\pm}0.05{ imes}10^{11}$

Decay Process After Neutron Irradiation

70 Ge (21%) + n $ ightarrow$ 71 Ge + γ	$\sigma_T = (3.43 \pm 0.17) \text{ b}$	
	$\sigma_{\it E}=1.5$ b	Ga (acceptor)
$^{71}\text{Ge} + e^- o ^{71}\text{Ga} + u_e$	$ au_{1/2}=11.4$ days	
$^{-74}$ Ge (36%) + n $ ightarrow$ 75 Ge + γ	$\sigma_T = (0.51 {\pm} 0.08)$ b	
	$\sigma_E = (1.0 \pm 0.2) \text{ b}$	As (donor)
$^{75}\text{Ge} ightarrow ^{75}\text{As} + e^- + ar{ u}_e$	$ au_{1/2}=$ 83 minutes	
76 Ge (7.4%) + n $ ightarrow$ 77 Ge + γ	$\sigma_T = (0.160 \pm 0.0014) \text{ b}$	
	$\sigma_E = (2.00 \pm 0.35) \text{ b}$	Se (double donor)
$^{77}{ m Ge} o {}^{77}{ m As} + e^- + ar u_e$	$ au_{1/2}=11.33$ hours	
$^{77}\text{As} ightarrow ^{77}\text{Se} + e^- + ar{ u}_e$	$ au_{1/2}^{'}=$ 38.8 hours	

 σ_T : thermal neutron capture cross section

 σ_E : epithermal neutron capture cross section

Ge Related Isotopes after Neutron Irradiation

- Dominant γ s: ⁷⁷Ge and ⁷⁵Ge related (no γ peaks for ⁷⁰Ge + n \rightarrow ⁷¹Ge + γ)
- $^{71}{\rm Ge:}$ stable, electron capture \rightarrow $^{71}{\rm Ga}$
- ⁷¹Ga: stable
- ⁷⁵Ge: 82.8 min
- ^{75m}Ge: 48 s
- ⁷⁵As: stable
- ⁷⁶As: 26.2 hr
- ⁷⁶Se: stable
- ⁷⁷Ge: 11.2 hr
- ^{77m}Ge: 53.7 s
- ⁷⁷As: 38.8 hr
- ⁷⁷Se: stable
- ⁷⁸As: 90.7 min (not found in γ spectra)
- ⁷⁸Se: stable

Dose Rates after Neutron Irradiation

- Neutron irradiation in two different holes (PTS#1, PTS#2)
- Neutron flux: PTS#1 > PTS#2

Evaluation: neutron irradiation 1 hours, 1 g

Cooling [day]	0	1	2	3	4	5	6	7
Dose [μ Sv/h]	188,000	3,750	1,170	363	113	36	11	4
Dose $[\mu Sv/h]$	67,200	520	177	61	21	7	3	1

Gamma Spectra after Neutron Irradiation

• Ge samples w/ different cooling time after neutron irradiation

• γ peaks and related isotopes

Energy [keV]	Isotope	Energy [keV]	lsotope	Energy [keV]	Isotope
139.53	^{75m} Ge	367.37	⁷⁷ Ge	559.08	⁷⁶ As
159.03	⁷⁷ Ge	413.68	⁷⁷ Ge	613.79	⁷⁷ Ge
198.60	⁷⁵ Ge	419.08	⁷⁵ Ge	634.46	⁷⁷ Ge
211.01	⁷⁷ Ge	419.72	⁷⁷ Ge, ^{77m} Ge	714.33	⁷⁷ Ge
215.48	⁷⁷ Ge	520.24	⁷⁷ Ge	1085.08	⁷⁷ Ge
238.97	⁷⁷ As	520.61	⁷⁷ As	1296.09	⁷⁷ Ge
249.78	⁷⁷ As	557.75	⁷⁷ Ge	1784.60	⁷⁷ Ge
264.66	^{75m} Ge, ⁷⁵ Ge, ⁷⁵ Se	557.97	⁷⁷ Ge		

Jinyu Kim*, Bo-Young Han, Gwang-Min Sun, Sung Progress in Investigating the Characteristics of Neutron October 24, 2024 KNS 2024 Fall 10/19

Gamma Spectra after Neutron Irradiation: Early Time

• Tested Ge sample: powder, 0.08 mg, 5 sec

• γ peaks and related isotopes

Energy [keV]	Isotope	Energy [keV]	Isotope
139.53	^{75m} Ge	520.24	⁷⁷ Ge, ⁷⁷ As
159.03	⁷⁷ Ge	1296.09	⁷⁷ Ge
215.48	⁷⁷ <i>m</i> Ge	1784.60	⁷⁷ Ge
264.66	^{75m} Ge, ⁷⁵ Ge, ⁷⁵ Se		

Gamma Spectra after Neutron Irradiation: After 2 Weeks

• Tested Ge samples: (disk, 30 min, broken) and (disk, 1 hr)

 γ peaks and related isotopes

Energy [keV]	lsotope	Energy [keV]	Isotope
159.03	⁷⁷ Ge	279.54	⁷⁵ Ge, ⁷⁵ Se
238.97	⁷⁷ As	520.24	⁷⁷ Ge
249.78	⁷⁷ As	520.61	⁷⁷ As

Hall Effect Measurement Device (HEMD) at KAERI

- Hall effect: current in magetic field → electric potential difference (Hall voltage) production across an electrical conductor
- Measurment parameters
 - dopant concentration
 - resistivity
 - conductivity
- HEMD

Main device

Measurement part

Manual for the device

• Sample connection

Dopant Concentrations w/ Different Irradiation Time

- Measuring dopant concentration using HEMD
- Carrying out neutron irradiation using research reactor HANARO
- Sample: Ge#3
- Weight: 0.693 g
- Reactor power: 27 MW
- irradiation hole: PTS#2
- irradiation time: 1 hr

- Sample: Ge#5
- Weight: 0.789 g
- Reactor power: 25 MW
- irradiation hole: PTS#2
- irradiation time: 2 hr

- Sample: Ge#6
- Weight: 0.762 g
- Reactor power: 25 MW
- irradiation hole: PTS#2
- irradiation time: 4 hr

- Sample: Ge#11 (disk, 0.775 g)
- Neutron irradiation
 - PTS#2, 21 MW, 6 hr (August 29, 2024)

- Sample: Ge#12 (disk, 0.717 g)
- Neutron irradiation
 - PTS#2, 21 MW, 6 hr (August 30, 2024)

- Sample: Ge#13 (disk, 0.735 g)
- Neutron irradiation
 - PTS#2, 21 MW, 6 hr (September 2, 2024)

- Sample: Ge#14 (disk, 0.602 g)
- Neutron irradiation
 - PTS#2, 21 MW, 6 hr (September 3, 2024)

Summary

- Testing time values for different neutron irradiation holes in HANARO
 - irradiation time: 5 sec 4 hr
 - cooling time: 200 sec 2 weeks
 - dose rates for neutron irradiated Ge samples
- Dominant isotopes after neutron irradiation
 - short cooling time (< 10 min): meta state of Ge, Ge
 - long cooling time (> 1 week): 77 Ge, 77 As, 75 Se

- Dopant concentration for 1-4 hr (25-27 MW): 1.5-5.1imes10¹⁴/cm²
- Dopant concentration for 6 hr, 21 MW

Sample	Ge#11	Ge#12	Ge#13	Ge#14	Average
Doping $(10^{14}/\mathrm{cm}^2)$	6.590	6.055	5.919	5.540	
Normalized for 1 g	8.503	8.445	8.053	9.203	8.551

Plans

- optimizing neutron irradiation configuration
- validating dopant concentration measurements using reference material
- measuring dopant concentration using other methods (SIMS, DLTS, etc.)
- increasing neutron irradiation time (8 hr, 12 hr, ..., 800 hr)
 - ightarrow achieving $10^{17}/{
 m cm^2}$ dopant concentration
- electrical contact, temperature sensing, etc.