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Usage of B and Li in primary coolant of pressurized water reactors 

• Nuclear power plant materials  

- Low alloy steels :~1,900 t 

- Stainless steels : ~ 900 t 

- Nickel base alloys : ~280 t 

- Others : Zr-base alloys, nuclear materials (Ag-In-Cd), 

Ceramics, Cu, Ti alloys, etc 

• Primary surface exposure :  

- Nickel base alloys : ~ 70% 

- Zr base alloys : ~ 20% 

- Stainless steel and others : ~10% 
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• 10B is used to control of core reactivity, continuous 

fission reaction. 

•  B concentration in primary water (→Acidic environment) 

     1,100~1,600 ppm(BOC) /  10~50 ppm(EOC) 

• Alkali agent addition to control the pH for corrosion 

      7LiOH is used to control the pH of coolant   

• 10B : 19.8% : reactivity control (σa : 4,010 barn) 

            10B + n thermal → 7Li + 4He + 2.35 MeV 



 Oxidation mechanism of  nickel-base alloys and stainless steels 

4 

 Ni-base alloys and stainless steels are in Ni-Cr-Fe alloy system→ Similar corrosion behaviors 

 

 Double layered oxide : (Internal oxide) Cr-rich oxide, (External oxide) Fe-Ni-rich oxide due to 

high diffusivity of Fe and Ni through passivation layer comparing to that of Cr 

Ni-Cr-Fe alloy system 
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 pH management in primary coolant of PWRs 

• Chemistry optimization : To minimize 1) corrosion of consisting materials, 2) fuel corrosion and crud deposit, 3) radiation buildup 

• Importance of major oxide solubility: 1) Nickel ferrite(NiFe2O4), 2) Magnetite(Fe3O4), background for pHT 6.9-7.4 

• pH management program 1) Modified elevated chemistry 2) Constant chemistry applied into domestic NPP 
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 Demand and research in alternative of 7LiOH; KOH  
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-  Lithium supply shortage and its consumption trend 

• STS and Nickel Alloy Performance: SCC (Stress 

Corrosion Cracking) tests in crack initiation and growth to 

evaluate material integrity under specific conditions in 

KOH. 

• Fuel Cladding Performance: Zirconium alloy integrity 

(corrosion) and CRUD deposition results showed positive 

evaluations in KOH studies. 

• pH control: Multiple alkali (Li, K) modeling and control 

research focused on optimizing pH control in nuclear 

reactors using MULTEQ upgrade 

-  KOH qualification program by EPRI consortium 

-  Increase of Li demand and price in various applications 

• Major supplier of 7LiOH in past 40 years → Chinese & Russia 

• Global supply shortage concern of 7LiOH due to a 

mechanical malfunction of Chinese production plant at 2013.  

• Explosive extension of electronic vehicle industry 

• Li consumption has abruptly increased and its price increase 
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Objectives : Comparison of main system materials in simulated primary coolant of Li-B and K-B  

                      environments 

Target materials : Alloy 690TT (steam generator), Stainless steel 304 (internal, piping),  

  Experimental evaluation: 

- Dissolved oxygen & dissolved hydrogen concentration : equivalent to primary coolant conditions of PWR 

- Temperature and pressure : average temp. of primary coolant and 130 bar 

- Chemistry and pH : B 1,000 ppm, Li 2.9 ppm and K 16.4 ppm for pH320oC 7.4 

- Analysis of corroded specimens :  Corrosion and release rate, Oxide morphology and chemical composition, 

etc. 



Material Ni Fe Cr Mn 

SG tube Alloy690TT Bal. 10.4 29.3 - 

Internal, piping STS304 8.0 Bal. 18.3 1.0 
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 Preparation of specimens  

• Alloy690TT and STS304  were polished with up to 2000-grit SiC paper. 

- Surface finish 

 Chemical compositions of specimens  

Unit :mm 

Alloy690TT STS304 
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Schematics of test equipment 
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Wo 

Total metal corroded weight =  W 
o 
– W 

d 

• Oxide film weight ( W 
ox 

) =  W 
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• Metal release ( W 
r 
) = ( W 

o 
– W 

d 
)  – R 

m 
W 

ox 

W 
o 

= original metal weight 

W 
a 

= weight of corroded specimen 

W 
d 

= weight of metal after descaling 

W 
ox 

= weight of corroded oxide 

R 
m 

= metal fraction in corroded oxide   

R 
o 

= oxygen fraction in corroded oxide 

• Corrosion rate =  W 
o 

• Release rate =  W 
r 

/ (A x T) 

A = surface area 

T = exposure time in primary coolant 

D = density 

/ (A x T) 

• 

 Evaluation methods of corrosion & release rate  Analysis of corroded specimens 

Analysis methods 
 

• Surface analysis 

     : Evaluation of the formation and thickness of  

       the oxide film using SEM. 

 

• Compositional analysis 

     : EDS is used to determine the elemental     

       composition and distribution of the oxide film. 

 

• Crystal structure analysis 

     : XRD is used to analyze the crystal structure  

       of the oxide film. 

 

• XPS depth profiles 

     : analyzing the chemical state of elements in  

       an oxide film 
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 Corrosion rate & Release rate of Alloy690TT in Li-B and K-B solution 

•  Corrosion rate exhibited exponential decline with increasing time 

•  Corrosion & Release rate were slightly higher in the Li-B specimen than in the K-B specimen 

•  The corrosion rate of Li-B specimen was found to be 36% greater than in the K-B specimen after 2000h of testing 

mg/dm2h 
Corrosion rate 

300 1000 1500 2000 

Li 1.44 0.72 0.60 0.36 

K 1.40 0.39 0.29 0.23 

mg/dm2h 
Release rate 

300 1000 1500 2000 

Li 0.43 0.17 0.14 0.05 

K 0.27 0.09 0.08 0.05 
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 Oxide morphology of Alloy690TT after general corrosion experiment 

•  Size of the outer oxide gradually increased with increasing time (300, 1000, 2000 h). 

•  Outer oxides with a polyhedral shape were formed both Li-B and K-B specimen 

•  In addition, needle-like oxide was formed on the surface of Alloy690TT in the Li-B after 300h of testing 

Li-B Solution 300h 

K-B Solution 300h 

Li-B Solution 1000h Li-B Solution 2000h 

K-B Solution 1000h K-B Solution 2000h 
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• In Li-B and K-B specimens, inner oxide layer higher atomic percentage of Cr than outer oxide layer 

• Li-B and K-B specimens formed Cr-rich oxide layer of less than 200nm 

 Cross-sectional microstructure of oxide layer formed on the Alloy690TT surface 

Point 1 Point 2 Point 3 Point 4 
Point 6 

Point 1 Point 2 Point 3 Point 4 

Point 5 
Point 6 

Point 5 

1 ㎛ 1 ㎛ 

Point EDS 

Point 
EDS 

Chemical composition (At%) 

O Cr Fe Ni Total 

1 21.22 19.66 11.62 47.5 100 

2 8.92 20.13 10.97 59.99 100 

3 6.2 22.07 12.27 59.46 100 

4 5.86 21.85 11.69 60.6 100 

5 15.51 20.07 12.33 52.09 100 

6 10.18 18.47 12.58 58.76 100 

avg. 11.315 20.375 11.91 56.4 100 

Point EDS 

Point 
EDS 

Chemical composition (At%) 

O Cr Fe Ni Total 

1 16.04 18.7 15.34 49.92 100 

2 12.1 20.31 13.13 54.46 100 

3 15.47 23.63 11.16 49.74 100 

4 10.3 20.7 12.28 56.72 100 

5 3.9 5.87 2.95 87.28 100 

6 2.84 4.85 3.23 89.08 100 

avg. 10.10 15.67 9.681 64.53 100 
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•  Corrosion rate exhibited exponential decline with increasing time 

•  Corrosion & Release rate were slightly higher in the Li-B specimen than in the K-B specimen 

•  The difference in corrosion rate between Li-B and K-B specimen was approximately 14% after 300h of testing 

 Corrosion rate & Release rate of STS304 in Li-B and K-B solution 

mg/dm2h 
Corrosion rate 

300 1000 1500 2000 

Li 7.10 2.64 2.02 1.55 

K 6.12 2.70 1.83 1.42 

mg/dm2h 
Release rate 

300 1000 1500 2000 

Li 1.30 0.73 0.85 0.59 

K 1.23 0.61 0.37 0.29 



•  Particle oxide size gradually increased with increasing time (300, 1000, 2000 h) 

•  Outer oxides with a polyhedral shape were formed both Li-B and K-B Specimen   
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 Oxide morphology of STS304 after general corrosion experiment 

Li-B solution 300h 

K-B solution 300h 

Li-B solution 1000h Li-B solution 2000h 

K-B solution 1000h K-B solution 2000h 
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•  Outer oxide particle size was measured to exhibit the distribution with Gaussian function 

•  Li-B and K-B specimens exhibit a gradual increase in particle size over time 

•  Outer oxide particle size measured in the Li-B specimen was generally larger than in K-B specimen 

•  Considering the corrosion rate and the size of the outer oxide film, Li-B can be more corroded than K-B. 
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 STS304 outer oxide particle size distribution in Li-B and K-B specimen  
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 XRD and SEM-EDS Results of STS304 after general corrosion experiment 

•   Characteristic magnetite peak ICSD#: 98-024-9047 is observed in both Li-B and K-B specimens and the metal 

peak around 45 degrees tends to decrease with increasing corrosion time. 

Li-B solution  K-B solution 

•   Li-B and K-B specimens, characteristic peaks of the oxide film were observed around 30 and 35 degrees. 
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• Inner oxide layer of Li-B specimen is  20 percent thinker than K-B specimen  

• Inner and outer oxide layer have high atomic percentage of oxygen in Li-B and K-B specimen 

 Cross-sectional microstructure of oxide layer formed on the STS304 surface 

1 ㎛ 1 ㎛ 

Point EDS 

Point 
EDS 

Chemical composition (At%) 

O Cr Fe Ni Total 

1 36.81 20.83 36.41 5.94 100 

2 34.99 20.71 38.51 5.79 100 

3 34.63 19.65 38.48 7.24 100 

4 31.39 15.1 45.59 7.92 100 

5 49.16 4.53 37.48 8.83 100 

6 46.51 3.51 40.53 9.45 100 

avg. 38.91 14.05 39.50 7.52 100 

Point EDS 

Point 
EDS 

Chemical composition (At%) 

O Cr Fe Ni Total 

1 44.19 18.73 28.89 8.19 100 

2 41.94 18.81 30.49 8.75 100 

3 23.88 17.78 45.91 12.43 100 

4 57.49 3.35 37.54 1.62 100 

5 59.81 1.95 37 1.24 100 

6 60.37 1.86 36.67 1.1 100 

avg. 47.94 10.41 36.08 5.55 100 
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 Effect of Li + and K+ Ion Radii on Corrosion Characteristics 

Inner 
Helmholtz Plane 

Outer 
Helmholtz Plane 

Inner 
Helmholtz Plane 

Outer 
Helmholtz Plane 

Li+ K+ 

• corrosion current density (icorr) under 

immersion in 10 mM LiOH is 2.03 × 10−7 

A/cm2 ,which is slightly higher than that in 10 

mM KOH (icorr = 1.55× 10−7 A/cm2 ).  

•  differences in the initial currents observed 

in solutions of LiOH (4.5 × 10−9 A) and 

KOH (0.7× 10−9 A), 
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• Oxide layer of STS304 and Alloy690TT consists of polyhedral shaped external oxides and dense internal oxide 

layer. 

 

• The external oxide is a NixFe3-xO4 (nickel ferrite) for Alloy 690TT and (Ni,Cr)xFe3-xO4 (almost magnetite) for 

STS304. In addition, the internal oxide is a (Ni, Fe)Cr2O3 (Cr-rich oxide) due to slow diffusion rate of Cr through 

preformed oxide layer. 

 

• Corrosion and release rates of STS304 and Alloy 690TT are larger in Li-B condition than in K-B condition due to its 

diffusion and solubility in different ionization environment.  

 

• KOH is acceptable to replace LiOH in PWR primary coolant with considering corrosion and release properties of 

STS304 and Alloy690TT. 
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