

Transactions of the Korean Nuclear Society Autumn Meeting Oral : Nuclear Power Plant Construction and Operation Technology for Nuclear Facility(10B Water Chemistry) October 24, 2024, 14:50~15:10

The effect of pH adjuster type on general corrosion characteristics of **Alloy690TT in pressurized water reactor**

Hui-won Kim^{1,2}, Seong-Jun Ha¹, Il Shon ², Hee-Sang Shim^{1,*}

¹Korea Atomic Energy Research Institute (KAERI) ²DMSE, Yonsei University

Contents

Research background

II **Experimental methods**

III **Results & Discussion**

Research background (1/4)

Usage of B and Li in primary coolant of pressurized water reactors

- **¹⁰B is used to control of core reactivity**, continuous fission reaction.
- B concentration in primary water (→**Acidic environment**) 1,100~1,600 ppm(BOC) / 10~50 ppm(EOC)
- Alkali agent addition to control the pH for corrosion **⁷LiOH** is used to control the pH of coolant
- ¹⁰B : 19.8% : reactivity control **(σa : 4,010 barn)**

¹⁰B + n thermal → ⁷Li + ⁴He + 2.35 MeV

• **Nuclear power plant materials**

- Low alloy steels $:-1,900$ t
- Stainless steels : \approx 900 t
- Nickel base alloys : ~280 t
- Others : Zr-base alloys, nuclear materials (Ag-In-Cd), Ceramics, Cu, Ti alloys, etc
- **Primary surface exposure** :
- Nickel base alloys : \sim 70%
- Zr base alloys : \sim 20%
- Stainless steel and others $:$ ~10%

Research background (2/4)

Oxidation mechanism of nickel-base alloys and stainless steels

- **Ni-base alloys** and **stainless steels** are in **Ni-Cr-Fe alloy** system→ **Similar corrosion behaviors**
- **Double layered oxide** : (Internal oxide) Cr-rich oxide, (External oxide) Fe-Ni-rich oxide due to high diffusivity of Fe and Ni through passivation layer comparing to that of Cr

Research background (3/4)

- Chemistry optimization: To minimize 1) corrosion of consisting materials, 2) fuel corrosion and crud deposit, 3) radiation buildup
- Importance of major oxide solubility: 1) **Nickelferrite(NiFe2O⁴),** 2) **Magnetite(Fe3O⁴)**, background for **pH^T 6.9-7.4**
- pH management program 1) **Modified elevated chemistry** 2) **Constant chemistry** applied into domestic NPP

Research background (4/4)

Demand and research in alternative of ⁷LiOH; KOH

- Major supplier of ⁷LiOH in past 40 years \rightarrow Chinese & Russia
- Global supply shortage concern of ⁷LiOH due to a mechanical malfunction of Chinese production plant at 2013.

- Increase of Li demand and price in various applications

- Explosive extension of electronic vehicle industry
- Li consumption has abruptly increased and its price increase

- **STS and Nickel Alloy Performance:** SCC (Stress Corrosion Cracking) tests in crack initiation and growth to evaluate material integrity under specific conditions in KOH.
- **Fuel Cladding Performance:** Zirconium alloy integrity (corrosion) and CRUD deposition results showed positive evaluations in KOH studies.
- **pH** control: Multiple alkali (Li, K) modeling and control research focused on optimizing pH control in nuclear reactors using MULTEQ upgrade

Research Objectives

Objectives : Comparison of main system materials in simulated primary coolant of Li-B and K-B environments

- **Target materials** : Alloy 690TT (steam generator), Stainless steel 304 (internal, piping),
- **Experimental evaluation**:
- Dissolved oxygen & dissolved hydrogen concentration : equivalent to primary coolant conditions of PWR
- Temperature and pressure : average temp. of primary coolant and 130 bar
- Chemistry and pH : B 1,000 ppm, Li 2.9 ppm and K 16.4 ppm for pH $_{3200c}$ 7.4
- Analysis of corroded specimens : Corrosion and release rate, Oxide morphology and chemical composition, etc.

8

Experimental methods (1/3)

Preparation of specimens

- Surface finish

• Alloy690TT and STS304 were polished with up to 2000-grit SiC paper.

Chemical compositions of specimens

Experimental methods (2/3)

Specimens for corrosion & release rate evaluation

> **Specimens for oxide analysis**

CAERI

Experimental methods (3/3)

W^o

 0000110000

 W_{a}

 W_{d}

 10000

 00001

Evaluation methods of corrosion & release rate **Analysis of corroded specimens**

- **Oxide film weight** $(W_{ox}) = W_a W_d$
- **Metal release** $(W_r) = (W_o W_d) R_m W_{ox}$
- **Corrosion rate** = $W_o W_d / (A \times T)$
- **Release rate** = $W_r / (A \times T)$

 $D = density$

- $A = surface area$
- $T =$ exposure time in primary coolant
- Total metal corroded weight $= W_o W_d$
	- W_0 = original metal weight W_a = weight of corroded specimen W_d = weight of metal after descaling W_{ox} = weight of corroded oxide R_m = metal fraction in corroded oxide
	- R_{o} = oxygen fraction in corroded oxide

- **Analysis methods**
- **Surface analysis**
	- : Evaluation of the formation and thickness of the oxide film using SEM.
- **Compositional analysis**
	- : EDS is used to determine the elemental composition and distribution of the oxide film.

• **Crystal structure analysis**

- : XRD is used to analyze the crystal structure of the oxide film.
- **XPS depth profiles**
	- : analyzing the chemical state of elements in an oxide film

Results & Discussion (1/9)

Corrosion rate & Release rate of Alloy690TT in Li-B and K-B solution

- Corrosion rate exhibited exponential decline with increasing time
- Corrosion & Release rate were slightly higher in the Li-B specimen than in the K-B specimen
- The corrosion rate of Li-B specimen was found to be 36% greater than in the K-B specimen after 2000h of testing

Results & Discussion (2/9)

Oxide morphology of Alloy690TT after general corrosion experiment

- Size of the outer oxide gradually increased with increasing time (300, 1000, 2000 h).
- Outer oxides with a polyhedral shape were formed both Li-B and K-B specimen
- In addition, needle-like oxide was formed on the surface of Alloy690TT in the Li-B after 300h of testing

Results & Discussion (3/9)

Cross-sectional microstructure of oxide layer formed on the Alloy690TT surface

• In Li-B and K-B specimens, inner oxide layer higher atomic percentage of Cr than outer oxide layer

• Li-B and K-B specimens formed Cr-rich oxide layer of less than 200nm

Results & Discussion (4/9)

Corrosion rate & Release rate of STS304 in Li-B and K-B solution

- Corrosion rate exhibited exponential decline with increasing time
- Corrosion & Release rate were slightly higher in the Li-B specimen than in the K-B specimen
- The difference in corrosion rate between Li-B and K-B specimen was approximately 14% after 300h of testing

Results & Discussion (5/9)

Oxide morphology of STS304 after general corrosion experiment

- Particle oxide size gradually increased with increasing time (300, 1000, 2000 h)
- Outer oxides with a polyhedral shape were formed both Li-B and K-B Specimen

Results & Discussion (6/9)

STS304 outer oxide particle size distribution in Li-B and K-B specimen

- Outer oxide particle size was measured to exhibit the distribution with Gaussian function
- Li-B and K-B specimens exhibit a gradual increase in particle size over time
- Outer oxide particle size measured in the Li-B specimen was generally larger than in K-B specimen
- Considering the corrosion rate and the size of the outer oxide film, Li-B can be more corroded than K-B.

Results & Discussion (7/9)

XRD and SEM-EDS Results of STS304 after general corrosion experiment

- Characteristic magnetite peak ICSD#: 98-024-9047 is observed in both Li-B and K-B specimens and the metal peak around 45 degrees tends to decrease with increasing corrosion time.
- Li-B and K-B specimens, characteristic peaks of the oxide film were observed around 30 and 35 degrees.

Results & Discussion (8/9)

Cross-sectional microstructure of oxide layer formed on the STS304 surface

Point EDS

• Inner oxide layer of Li-B specimen is 20 percent thinker than K-B specimen

• Inner and outer oxide layer have high atomic percentage of oxygen in Li-B and K-B specimen

Results & Discussion (9/9)

Effect of Li ⁺ and K⁺ Ion Radii on Corrosion Characteristics

• corrosion current density (icorr) under immersion in 10 mM LiOH is 2.03×10^{-7} A/cm², which is slightly higher than that in 10 mM KOH (icorr = 1.55×10 –7 A/cm²).

• differences in the initial currents observed in solutions of LiOH (4.5 × 10−9 A) and KOH (0.7× 10−9 A),

Conclusions

- Oxide layer of STS304 and Alloy690TT consists of polyhedral shaped external oxides and dense internal oxide layer.
- The external oxide is a Ni_xFe_{3-x}O₄ (nickel ferrite) for Alloy 690TT and (Ni,Cr)_xFe_{3-x}O₄ (almost magnetite) for STS304. In addition, the internal oxide is a (Ni, Fe)Cr₂O₃ (Cr-rich oxide) due to slow diffusion rate of Cr through preformed oxide layer.
- Corrosion and release rates of STS304 and Alloy 690TT are larger in Li-B condition than in K-B condition due to its diffusion and solubility in different ionization environment.
- KOH is acceptable to replace LiOH in PWR primary coolant with considering corrosion and release properties of STS304 and Alloy690TT.

Thank you

E-mail : hwkim95@kaeri.re.kr

