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1. Introduction 

 
Risk assessment of nuclear power plants (NPPs) is 

classically performed with representative accident 

scenarios involving conservative, static and binary 

assumptions about event sequences and success criteria. 

However, these assumptions may overlook dynamic 

factors that can change the accident progression, such 

as delayed operator response and partial operation of 

safety systems. In the case of multiple units with shared 

components and passive safety systems with natural 

power sources, these dynamic factors may need to be 

considered more explicitly in the assessment. 

To this end, so-called dynamic safety (risk) 

assessments, which takes the dynamic factors into 

account more consciously, have been proposed to 

complement the static approaches with representative 

scenarios. Typically, these assessments decompose a 

single representative scenario into multiple ones 

according to the variances of dynamic factors. 

Consequently, a clear challenge of these assessments is 

that the number of scenarios to be simulated increases 

exponentially. This challenge imposes a computational 

burden because each scenario should be simulated by 

computationally expensive physical models, such as 

thermal-hydraulic (TH) system codes. For instance, in 

the dynamic risk assessments performed by Kubo et al., 

more than 100,000 scenarios were considered according 

to the initiation time of the reactor coolant pump seal 

loss-of-coolant accident and the failure times of the 

emergency diesel generators, safety injections and 

offsite power restoration [1].  

To alleviate this burden, two approaches have been 

intensively investigated: a fast-running surrogate and an 

adaptive sampling. A fast-running surrogate is to 

simulate the scenarios with rapid data-driven models 

instead of costly physical models. Due to its ability to 

capture complex patterns, deep learning has been 

widely used as the surrogate model [2, 3]. Adaptive 

sampling, on the other hand, is an approach to reduce 

the number of scenarios to be simulated. To do this, 

sampling approaches typically employ an iterative 

sampling process with a metamodel, where the model 

training and model-guided sampling are repeated [4-6]. 

However, both approaches have limitations. For a 

fast-running surrogate, training data-driven models 

requires simulation results of substantial scenarios as a 

training data. As a result, it can pose another simulation 

burden. For adaptive sampling, the consequences of 

unsampled scenarios, including the trends of critical 

plant parameters, are not revealed. In addition, the 

previously proposed adaptive sampling methods use 

classical machine learning models as metamodels, 

which makes it difficult to apply to more than millions 

of scenarios due to the high time complexity. 

To address these limitations, we propose a novel 

platform to reduce the computational burden of 

simulating massive dynamic scenarios. Given dynamic 

scenarios, this approach first optimizes the scenarios to 

be simulated using a previously developed deep 

learning-based adaptive sampling algorithm. Then, 

another deep learning model is trained to predict the 

trends of unsimulated scenarios based on the trends of 

simulated ones.  

The proposed platform utilizes the epistemic 

uncertainty in deep learning models and this paper will 

mainly focus on how this uncertainty is exploited. 

Section 2 provides a brief overview of epistemic 

uncertainty in deep learning and how it can be 

quantified. Section 3 introduces the novel platform to 

reduce the computational burden of dynamic risk 

assessment. Section 4 explains how epistemic 

uncertainty has been applied in this platform to improve 

the efficiency and consistency of the simulation 

optimization results and to provide a prediction interval 

(PI) of the trend predictions. Section 5 concludes the 

paper. 
 

2. Epistemic Uncertainty in Deep learning 
 

There are two primary sources of uncertainty in deep 

learning: aleatoric and epistemic. Aleatoric uncertainty 

accounts for the randomness inherent in the data itself, 

while epistemic uncertainty represents the ignorance in 

the model's knowledge, especially when only a limited 

data is given. Figure 1 illustrates the difference between 

aleatoric and epistemic uncertainties.  
 

 
Fig. 1. Aleatoric and epistemic uncertainties. 
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Monte Carlo dropout (MC dropout) is a cost-

effective approximation of the epistemic uncertainty in 

deep learning [7]. It is widely used due to its 

practicality in applying to deep learning without major 

modifications, The first step for applying it is to activate 

a dropout during the training phase. A dropout is a 

regularization technique to prevent model overfitting. 

As the name suggests, it randomly drops a fraction of 

neurons for each training trial, as shown in the Figure 2.  

 

 
Fig. 2. A deep learning model with dropout 

 

In the inference phase, MC dropout activates the 

dropout and makes multiple predictions for a given 

input with different dropout configurations. If the model 

has sufficient knowledge about a given input, it will 

produce consistent outputs. Conversely, if the model 

has limited knowledge, it will produce variant outputs 

according to the dropout configurations. By measuring 

the variance of the outputs, the epistemic uncertainty 

can be quantified. 

 

3. Deep Learning-Based Platform for Dynamic Risk 

Assessment 

 

In this research, we propose a novel deep learning-

based platform for dynamic risk assessment, named a 

deep learning-based optimized simulation and 

consequence estimation with neural network 

uncertainty (DOSCENT). It consists of a deep learning-

based algorithm for simulation optimization (i.e., deep 

learning-based searching algorithm of informative limit 

surfaces/scenarios/states [Deep-SAILS]) proposed in 

the authors’ previous work [8], and a deep learning-

based  parameter trend prediction model, named 

consequence estimation with neural network 

uncertainty (CENT). 

To overcome the limitations of an adaptive sampling 

and a fast-running surrogate, we sequentially integrate 

the surrogate and sampling and introduce deep learning 

and its epistemic uncertainty. Figure 3 illustrates how 

the DOSCENT works for given dynamic scenarios. 

First, DOSCENT selectively simulates the scenarios as 

guided by Deep-SAILS. Then, using the optimized 

simulations, DOSCENT trains a deep learning model to 

predict the trends of the critical parameters for the non-

simulated scenarios. Both Deep-SAILS and CENT 

utilizes epistemic uncertainty in deep learning to 

improve the sampling efficiency and provide a PI in 

trend prediction. The details of the utilization of the 

uncertainty are discussed in the following section. 

 
 

Fig. 3. Promising results of DOSCENT including simulation 

optimization and trend predictions for non-simulated 

scenarios. 
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4. Utilization of Epistemic Uncertainty 

 

4.1 Simulation Optimization 

 

Deep-SAILS is an iterative process that identifies 

limit surfaces (i.e., boundary between success and 

failure scenarios) and intensively simulates the 

scenarios close to the surfaces. Figure 4 shows the 

flowchart of Deep-SAILS. The process first simulates 

heuristically selected scenarios or extreme scenarios 

that configured by the highest and lowest values of the 

dynamic factors. Based on the simulation results, a deep 

learning model is trained to predict the outcome (e.g., 

peak cladding temperature) of given scenario conditions. 

Next, the algorithm selects the scenarios to be simulated 

based on the predictions for the unsimulated scenarios. 

This process continues until most of the scenarios 

selected in the current stage have been selected in the 

previous stages, indicating that the algorithm is 

converging. More details about Deep-SAILS can be 

found in [8]. 

 

 
Fig. 4. Algorithm flow chart of Deep-SAILS [8] 

 

In this algorithm, epistemic uncertainty is used to 

improve sampling efficiency. Figure 5 shows the 

scenario scoring function [9] of Deep-SAILS. The 

numerator is an absolute deviation between the 

predicted outcome and the failure criteria, and the 

scenarios with lower scores are sampled preferentially. 

This is a typical scoring function employed by various 

adaptive sampling methods [4-6]. 

 

 
Fig. 5. U-learning function [9] for scoring the scenarios. 

 

The idea of Deep-SAILS is to divide deviations with 

epistemic uncertainty. Since this uncertainty is 

associated with lack of knowledge, it helps to sample 

the scenarios more homogeneously by giving more 

weight to the scenarios from less sampled regions. 

Figure 6 presents the results of the case study with and 

without the uncertainty [8]. Deep-SAILS with 

uncertainty information identified the success and 

failure of the scenarios with higher accuracy compared 

to the algorithm without uncertainty. Another notable 

point is that the algorithm runs with uncertainty produce 

consistent results compared to the runs without 

uncertainty. 

 

 
Fig. 6. The percentage of error in classifying the success and 

failure of entire scenarios (40,250 scenarios were assumed) 

when simulating different numbers of scenarios. Green dots 

are the result without uncertainty information and red dots are 

the result with uncertainty information (i.e., Deep-SAILS) [8]. 

 

4.2 Consequence Estimation 

 

As mentioned above, a clear disadvantage of adaptive 

sampling methods is that most scenarios remain 

unsimulated and therefore the consequences, including 

time variations of important parameters, of these 

scenarios cannot be known. To overcome this limitation, 

DOSCENT uses deep learning to estimate the 

consequence of unsimulated scenarios. The training 

data is the optimized simulation result guided by Deep-

SAILS. 

The challenge of consequence estimation lies in the 

lack of knowledge due to preferential simulation. For 

instance, when there are many simulated scenarios 

similar to a given unsimulated scenario, accurate 

predictions can be made. However, when there are no 

simulated scenarios near the given unsimulated scenario, 

predictions carry high uncertainty. Furthermore, 

predictions can also have high uncertainty when the 

conditions of the given unsimulated scenario fall within 

a region of rapid change. As this issue is inevitable, 

CENT addresses this issue by revealing the uncertainty 

in trend predictions. 

Figure 7 shows the structure of the deep learning 

model of the CENT. It consists of a latent predictor, 

which outputs the latent vector (z) for a given scenario 

condition, and the decoder, which reconstructs the 

parameter trend from the estimated latent vector.  

In the training phase, the predictor learns the latent 

vectors of the training data (i.e., the trends of the critical 

parameters) while activating the MC dropout. When 

given an unsimulated scenario, the latent predictor will 

output relatively consistent vectors (red dots) regardless 
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of different dropout configurations if the given 

condition is similar to the training data. The parameter 

trend reconstructed from these vectors will also be 

consistent and have a narrow PI, as shown in Figure 8. 

 

 
Fig. 8. Trend prediction for low uncertainty scenario. The blue 

line is the point-estimated trend prediction, and the shaded 

areas corresponding to the 98% and 60% PI, and the red-

dotted line is the real trend given by the TH simulation. 

 

In contrast, if the given condition is relatively much 

different from the training data, the latent vector 

predictions will vary with the dropout configurations, 

and the reconstructed trend will have a wide PI, as 

shown in Figure 9. It should be noted that even if the 

given condition is similar to the training data, a PI can 

be wide if the condition is on a region with rapid 

changes in the parameter trends. 

 

 
Fig. 9. Trend prediction for high uncertainty scenario. 

 

5. Conclusion 

 

In this research, we developed DOSCENT to reduce 

the computational burden associated with dynamic risk 

assessment and employed epistemic uncertainty in deep 

learning models to improve the sampling efficiency of 

simulation optimization and provide a PI in 

consequence parameter trend prediction. Currently, 

DOSCENT has been integrated into the TH system 

codes and is being used to analyze the dynamic 

scenarios.  
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