Redox Reactions and Sorption of Selenite (Se^{IV}) on Chlorite Surface

Min-Hoon Baik^{*}, Tae-Yup Lee

Korea Atomic Energy Research Institute (KAERI), Daedeokdaero 1045, Yuseong-gu, Daejeon 305-353, Korea *Corresponding author: mhbaik@kaeri.re.kr

1. Introduction

The long-lived radionuclide ⁷⁹Se is one of elements of concern because of its long half life $(4.8 \times 10^5 \text{ or } 1.11 \times 10^6 \text{ years})$, high mobility, and severe toxicity in the environments. Selenium exists in four different oxidation states with very different chemical behaviors such as selenide (Se^{-II}), elemental selenium (Se⁰), selenite (Se^{IV}O₃²⁻), and selenate (Se^{VI}O₄²⁻). Owing to their negative charge, Se^{VI} and Se^{IV} species adsorb to Fe^{III} oxides, but are only weakly sorbed by clay minerals with prevalent cation exchange capacity [1]. Since Se^{VI} and Se^{IV} oxoanions act as terminal electron acceptors, Se^{VI} and Se^{IV} are reduced abiotically by Fe^{II}-containing solids.

Therefore, in this study, we investigated the redox reactions and sorption of selenite (Se^{IV}) on chlorite mineral which is one of Fe^{II} -containing minerals and sorbents for migrating radionuclides. The chemical species of selenium on the chlorite surface was identified using an X-ray Absorption Near-Edge Structure (XANES). In particular, the effects of Fe^{II} ions on redox reactions and sorption of selenite on chlorite surface were investigated.

2. Sorption Experiment

2.1 Sorption Experiment

The chlorite used in the experiments was an unaltered ripidolite (CCa-2 chlorite) sampled from El Dorado County, California, USA. A chlorite fraction of 75-150 μ m in diameter was used in the sorption experiments. Sorption experiments were carried out under an anoxic condition using a glove-box with an Ar atmosphere (O₂ < 5 ppm). 0.5 g of chlorite was reacted with 10 mL of solution in a 15 mL centrifuge tube. Suspensions of chlorite were prepared at two different ionic strengths in NaClO₄ (*I*=0.1 and 0.01 M) and at three different pH values. Selenite as a Na₂SeO₃ was added to achieve a final concentration of 0.02 M. Details of the conditions are given in Table I.

After a prerequisite contact time, the solid was separated from the liquid using a syringe filter with 0.2 μ m pore size. Afterwards the chlorite was dried under an Ar atmosphere and reserved for XANES measurements. 50 ppm of ferrous ions (as FeCl₂) was added to investigate the effects of Fe(II) ions on redox reactions and sorption of selenite on chlorite surface. The concentrations of Fe^{II} and Fe^{III} in the solution were

measured	by	а	ferrozine	method	using	а	UV-VIS
spectropho	otom	nete	er.				

Table I: Experimental Conditions for Selenite Sorption

Samples	Contact time (days)	I (NaClO ₄)	pН	Fe(II), ppm (FeCl ₂)
Se-1	7	0.01 M	5.1	-
Se-2	7	0.1 M	5.0	-
Se-3	7	0.1 M	3.3	-
Se-4	7	0.1 M	7.1	-
Se-5	7	0.1 M	9.0	-
Se-6	28	0.1 M	5.0	-
Se-7	56	0.1 M	4.9	-
Se-8	56	0.1 M	5.1	50
Se-9	56	0.1 M	8.9	50

2.2 XANES Measurements

XANES spectra were collected at the Se *K*-edge (12,658 eV) at the 3C1 beamline of the PLS (Pohang Light Source, Pohang Accelerator Laboratory). All samples were scanned in a fluorescence mode using a 7-element germanium detector in the Ar/N_2 -filled ionization chamber. Fig. 1 shows a photograph of the 3C1 beamline at PLS used for XANES measurements.

Fig. 1. The arrangement of equipments (a) and a photograph (b) of the 3C1 beamline for XANES measurements at PLS.

3. Results and Discussion

3.1 Results of Sorption Experiment

The result of the sorption experiment summarized in Table II shows that the K_d values of Se^{IV} are very low regardless of the chemical conditions and selenite is nearly sorbed on the chlorite surface. When the pH is low (Se-3), the amount of dissolved Fe^{II} and Fe^{III} ions is increased and a relatively higher K_d value is obtained. This means that Fe ions were almost not dissolved from the chlorite surface regardless of contact time. Instead, much amount of Mg ions about 10-50 ppm depending

on conditions was dissolved from chlorite surface since the chlorite used contained larger amount of Mg than Fe.

Samples	[Fe ^{II}] (mg/L)	[Fe ^{III}] (mg/L)	% of Sorbed	K _d (mL/g)
Se-1	0.0013	0.0570	0.00	0.00
Se-2	0.0014	0.0804	0.51	0.10
Se-3	0.1664	0.1687	2.91	0.60
Se-4	0.0010	0.0676	1.34	0.27
Se-5	0.0000	0.0827	5.43	1.15
Se-6	0.0155	0.0482	4.03	0.84
Se-7	0.0019	0.0603	4.06	0.85
Se-8	4.8362	0.1882	6.82	1.46
Se-9	0.0000	0.0994	2.03	0.41

Table II: Result of Sorption Experiment

When additional 50 ppm of Fe^{II} ions are added to the sorption system (Se-8 and Se-9) following three processes can be occurred:

- (P1) formation of precipitating ferrous selenite solid (FeSeO₃(s)) in the solution
- (P2) oxidation of Fe^{II} to Fe^{III} by reducing Se^{IV} to Se⁰ in the solution
- (P3) sorption of Fe^{II} ions on the chlorite surface resulting in a heterogeneously reduction of the sorbed Se^{VI} to Se^0

At the alkaline condition (Se-9), almost whole amount of added Fe^{II} ions were disappeared. This can implicate that the added Fe^{II} ions were sorbed on the chlorite surface or precipitated as a ferrous selenite (FeSeO₃) or a ferrous selenide (FeSe) solid.

3.2 Result of XANES Measurements

The result of XANES measurements for the samples Se-1 to Se-9 is shown in Fig. 2. The XANES result indicates that selenite sorbed onto the chlorite surface is remained in a Se^{IV} oxidation state or a Se^{VI} depending upon the conditions.

Fig. 2. Results of XANES measurements.

It is interesting to notice that the Se^{IV} was oxidized to Se^{VI} at a higher pH (Se-4 and Se-5) and contact time

(Se-6 and Se-7). We cannot obviously explain this oxidation of Se^{IV} to Se^{VI} in a given experimental system. However, it can be presumed that this oxidation may be due to a gradual change of chemical conditions by the dissolution of constituent ions (for instance, Mg^{2+} , AI^{3+}) from the chlorite surface and/or by some additions of chemical reagents containing oxygen. By the way, some important redox reactions such as the reduction of Se^{IV} to Se^{-II} and the formation of ferrous selenide ($Fe^{II}Se(s)$) were not observed in the XANES measurements.

However, Se^{IV} was certainly reduced to elemental selenium (Se^0) when Fe^{II} was added to the system at an alkaline condition (Se-9). This reduction of selenite to elemental selenium is related with the disappearance of the added Fe^{II} from the solution as shown in Table II. This disappearance of Fe^{II} can be occurred by the sorption of Fe^{II} onto the chloride surface. The sorbed Fe^{II} can reduce the Se^{IV} to Se^0 by the oxidation of Fe^{II} to Fe^{III} . Thus the peak of Se^0 of the Se-9 sample may be due to the process P3.

On the other hand, Se^{IV} was not totally reduced to Se^{0} at an acidic condition (Se-8) and only a small peak of Se^{0} was appeared at the XANES measurement. The large peak of Se^{IV} for the Se-8 sample in the presence of Fe^{II} ions may be due to the formation of ferrous selenite solid by the process P1. The possibility for the process P2 was ignored since an electron transfer from Fe^{II} to Se^{IV} is strongly favored by a heterogeneous surface reaction, while a reduction in the solution is strongly restricted [3].

3. Conclusion

In this study, it is noticed that the redox reactions and sorption of selenite are greatly influenced by the presence of Fe^{II} ions and pH as well as Eh. Some further studies are necessary to investigate the effects of Fe^{II}/Fe^{III} ions on heterogeneous surface redox reactions of selenium coupled with aqueous reactions of selenium with iron ions.

ACKNOWLEDGEMENT

We thank Prof. J.I. Yun and Mr. J.Y. Oh (KAIST) for their kind helps for the measurements of Fe^{II} and Fe^{III} concentrations. This study was carried out by the Nuclear R&D program of the Ministry of Education, Science, and Technology (MEST), Korea.

REFERENCES

[1] A. C. Scheinost, R. Kirsch, D. Banerjee, A Fernandez-Martinez, H. Zaenker, H. Funke, L. Charlet, X-ray absorption and photoelectron spectroscopy investigation of selenite reduction by Fe^{II}-bearing minerals, J. Contam. Hydrol., Vol.102, p 228, 2008.

[2] H. Reuther, T. Arnold, and E. Krawczyk-Bärsch, Quantification of secondary Fe-phases formed during sorption experiments on chlorites. Hyper Interactions, Vol.156/157, p.439, 2004.