
Transactions of the Korean Nuclear Society Spring Meeting 
Taebaek, Korea, May  26-27, 2011 

 

 
Implementation of Neutronics Analysis Code using the Features of Object Oriented 

Programming via Fortran90/95 
 

Tae Young Han, Beom Jin Cho 
KEPCO Nuclear Fuel, 1047 Daedukdaero, Yuseong-gu, Daejeon, Korea, 305-353 

*Corresponding author: tyhan@knfc.co.kr 
 

1. Introduction 
 

The object-oriented programming (OOP) [1] concept 
was radically established after 1990s and successfully 
involved in Fortran 90/95 [2]. The features of OOP are 
such as the information hiding, encapsulation, 
modularity and inheritance, which lead to producing 
code that satisfy three R’s: reusability, reliability and 
readability. The major OOP concepts, however, except 
Module are not mainly used in neutronics analysis codes 
even though the code was written by Fortran 90/95.  

In this work, we show that the OOP concept can be 
employed to develop the neutronics analysis code, 
ASTRA1D (Advanced Static and Transient Reactor 
Analyzer for 1-Dimension), via Fortran90/95 and those 
can be more efficient and reasonable programming 
methods. 

 
2. Class Design 

 
The most important thing in the object oriented 

programming is the abstraction of data and the 
definition of class. The abstraction means that problems 
or models are simplified to variables and their 
functional methods. Also, the class stands for self-
sufficient modules involving variables and methods 
obtained through the process of the data abstraction. 
Since the concept of OOP in Fortran 90/95, however, is 
basically imperfect, such notations can be incompletely 
but sufficiently implemented by user-defined data type 
and Module. 

In next section, it is presented how to construct the 
classes from the neutronics analysis model and how to 
compose variables and methods for the classes 
including the features of OOP. 

 
2.1 Class Hierarchy 

 
Node and Face class can be constructed as the 

elementary user-defined data type in diffusion equation 
nodal solver. Here, Node means a neutronics mesh in 
the solver and Face means a boundary between two 
neighboring nodes. Then, FuelAssembly class can be 
composed of Node class and Face class and it obviously 
means fuel assembly in reactor core. Lastly, Reactor 
class designed as a reactor core is composed of 
FuelAssembly class, ControlAssembly class and 
CoolantSystem class, and so on. The class hierarchy 
above is showed in the class diagram, Fig.1. In other 
words, after the basic classes from the given model are 

composed, a large scale class can be constructed using 
those. Then, the functions or methods can be logically 
written using the already designed class. Consequently, 
Reactor as the higher level class can own the all 
variables of the lower level class, FuelAssembly, etc. 

 
Fig. 1. Class hierarchy in neutronics code 

 
2.2 Variables and Methods 
 

As mentioned above, Node class has all variables, 
node average flux and cross sections, etc., that are 
contained by elementary mesh of the neutronics solver. 
For example, Node class can be written by using Type 
as the followings. 

 

Face class can be designed by the same manner and it 
has variables as like partial currents, face flux and 
boundary information. Then, FuelAssembly class can be 
composed of Node and Face class. Eventually, Reactor 
class has the variables of FuelAssembly Type and 
ControlSystem Type, and so on, as the followings. 

 

type FuelAssembly 
       real ::power 
       type(Node), dimension(:), pointer :: nodes 
       type(Face), dimension(:), pointer :: faces 
       ...... 
end type FuelAssembly 
 
type Reactor 

type(FuelAssembly), dimension(:), pointer :: fuel_assm 
type(CoolantSystem), dimension(:),pointer  :: coolant_sys 
…… 

end type Reactor 

type Node 
type(CrossSection), pointer :: xs 
type(Face), dimension(:) :: faces 
real      ::  size 
real, dimension(:), pointer :: flux_avg 
…… 

end type Node 

 
 
 
 
 

Reactor 

 
Fuel 

Assembly 

Control 
Assembly 

Coolant 
System 

Node 

Face 

... 
 



Transactions of the Korean Nuclear Society Spring Meeting 
Taebaek, Korea, May  26-27, 2011 

 
Since Module of Fortran 90/95 can contain 

subroutines or functions as the same notation with the 
method in OOP, the each class has its own methods 
inside Module. This feature adds high modularity to a 
code. For example, constructor and copy constructor 
functions for Reactor class can be written as the 
following source.  Especially, the copy constructor of 
Reactor class was useful in the reactivity calculations 
which involve changing thermal hydraulic conditions. 

 

 
2.3 Data Passing 

 
Because the well designed classes using the OOP 

features has independence to other classes, the member 
data inside a class can be efficiently transferred to other 
classes or functions and can be easily exported to other 
codes. The following source shows two examples 
written by old manner and by new type. 

 
All data in the old type source have to be individually 

transferred to external functions through the arguments 
or the form of common variables. But, the only 
argument in the program of new type is a single Reactor 
which contains all data such as FuelAssembly and 
CoolantSystem. Therefore, this structure has the 
advantages of the high portability and the better 
readability. 

 
3. Data Structure 

 
3.1 Data Type for Pointer Array 

 
Pointer in Fortran 90/95 only means alias and cannot 

store memory address such as C or C++. Hence, an 
array storing pointer data type is not declared in Fortran. 
In order to overcome the weakness, intermediate user-
defined data type storing only one pointer variable can 
be defined as the following source code.  

Then, RealPointer Type variable can be declared as 
array in other Type or Module and this alternate data 
type can carry on the same function with the pointer 
array in C++. 

 
 
3.2 Linked List 
 

Node as mentioned in the previous chapter has two 
Faces in both sides per one direction and one Face has 
two neighboring Nodes. Though Node and Face are 
independent class, flux in Node and currents in Face 
obtained by nodal solver should be simultaneously 
updated and readily affect to neighboring Node or Face. 
Therefore, similar data structure with the linked list was 
constructed using pointer array previously described 
and Node and Face can be linked as the followings. 

 
 

4. Conclusions 
 

The neutronics analysis code, ASTRA1D, including 
diffusion equation nodal solver was developed using the 
concept of object oriented programming via Fortran 
90/95. The physical reactor model was separated to the 
abstract elements and redefined by the basic classes 
such as Node and Face, according to the principal of 
OOP. Then, they were integrated into FuelAssembly 
class and Reactor class. In addition, constructor and 
copy constructor for user-defined data type were newly 
defined and pointer array and linked list were designed. 

Consequently, the data structure and the functions has 
the modularity and the portability known as the features 
of OOP and the entire neutronics analysis code could be 
efficiently developed and worked. 

 
ACKNOWLEDGMENTS 

 
This work was supported by the Nuclear Research & 

Development of the Korea Institute of Energy 
Technology Evaluation and Planning (KETEP) grant 
funded by the Korea government Ministry of 
Knowledge Economy. 
 

REFERENCES 
 

[1] Bjarne Stroustrup, The C++ Programming Language, 
Addison-Wesley Pub. Co., 3rd Edition, (2000). 
[2] Ed Akin, Object Oriented Programming via Fortran 90/95, 
Rice Univ., Texas, USA (2001). 

type Face 
      …... 
end type Face 
 
type NeighborFace 
      type(Face), pointer :: ptr     
end type NeighborFace 
 
type Node 

type(NeighborFace), dimension(2) :: faces 
end type Node 

type RealPointer 
      real(NBR), pointer :: ptr 
end type RealPointer 
 
type Face 

type(RealPointer), dimension(:,:), pointer :: node_flux 
end type Face 

!! Old Type Data Passing  
call solveSystem( flux[], sigma[], current[] , size[], float k_eff, .... ) 
 
!! New Type Data Passing 
call solveSystem( reactor ) 

function newReactor( n )  result( rx ) 
      type(Reactor) :: rx 
      integer(NBI), intent(in) :: n 
 
      rx%no_mesh = n  
      allocate( rx%coolant_system(n) ) 
      allocate( rx%fuel_assm(n) ) 
      ...... 
end function newReactor 
 
function copyReactor( rx ) result( new_rx ) 
      type(Reactor) :: rx, new_rx 
      new_rx%no_axial_mesh = rx%no_axial_mesh 
      new_rx%fuel_assm(:) = copyFuelAssembly( rx%fuel_assm(:) ) 
      ...... 
end function copyReactor 


	분과별 논제 및 발표자

	PNO0: - 169 -
	PNO1: - 170 -


