Modeling of the Sulfuric Acid and Sulfur Trioxide Decomposer using Aspen Plus

DongUn Seo^a, C. S. Kim^b, T. H. Yoo^b, S. D. Hong^b, Y. W. Kim^b, G. C. Park^a

^aSeoul National University, Gwanak-ro 599, Gwanak-gu, Seoul, 151-742, Korea

^bKorea Atomic Energy Research Institute, Daeduk-Daero 1045, Dukjin-dong, Yuseong-Gu, Daejeon, 305-600, Korea,

¹Corresponding author: duseo@kaeri.re.kr

1. Introduction

A hydrogen production system using VHTR, which was combined with a Sulfur-Iodine (SI) thermochemical cycle, is a good candidate for massive hydrogen production. It is being investigated for Nuclear Hydrogen Development and Demonstration (NHDD) project in Korea Atomic Energy Research Institute [1].

The SI thermo-chemical cycle is a good promise for the economical and eco-friendly hydrogen production. In SI cycle, the decomposition of a sulfuric acid is main concern for the material corrosion and mechanical stress on high temperature and pressure operation condition.

KAERI has designed and constructed a small-scale gas loop that included sulfuric acid experimental facilities as a secondary loop [2]. The main objectives of the loop are to monitor and validate the performances of NHDD component such as the Process Heat Exchanger (PHE) and sulfuric acid decomposer [3].

In this paper, we discussed the results of the modeling of the sulfuric acid and sulfur trioxide decomposer using Aspen plus process simulator [4].

2. Methods and Results

2.1 Small Scale Sulfuric Acid Loop

A small scale sulfuric acid (H₂SO₄ 96 %wt) loop is an open loop and consists of a H₂SO₄ storage tank, a H₂SO₄ feed pump, a sulfuric acid evaporator (H₂SO₄ pre-heater) and decomposer (H₂SO₄ super-heater), a process heat exchanger (PHE), a high temperature cooler, a separator, a SO₂ trap, a low temperature cooler, and a H₂SO₄ collector as shown in Figure 1. Liquid H₂SO₄ 96 %wt of room temperature is supplied from a H_2SO_4 storage tank to the evaporator through the H_2SO_4 feed pump. Liquid H_2SO_4 in the evaporator is raised from room temperature to 300°C. The outlet temperature of superheater is reached up to 500°C. In the superheater, the evaporated sulfuric acid is dehydrolyzed into water vapor and sulfur trioxide (SO₃). In the PHE, the sulfur trioxide is decomposed into sulfur dioxide (SO_2) and O_2 . The mixed gas, such as SO₃, SO₂, H₂O, and O₂, passes through the cooler and the separator. Sulfur dioxide (SO₂) is trapped in the scrubber, and the oxygen is released to the atmosphere via filter system.

Fig. 1. Small Scale Sulfuric Acid Loop

2.2 Modeling of the Process Simulator

A sulfuric acid loop was simulated using an Aspen plus chemical process simulator. Figure 2 shows the flow sheet of the sulfuric acid loop for Aspen plus modeling. The evaporator (evap), sulfuric acid decomposer (decomp 1) and sulfur trioxide decomposer (decomp 2) were modeled using the reactor model. The Gibbs reactor model was used to model the evaporator and sulfuric acid and sulfur trioxide decomposer. In Tables 3 and 4, the test matrixes are divided into two parts: sulfuric acid decomposer and sulfur trioxide decomposer. High and low temperature coolers were modeled using constant boundary conditions of 50°C and 20°C, respectively.

2.3 Results

Table 3 shows the mole fractions of the H_2SO_4 decomposer with constant temperature of 500°C at SO₃ decomposer. As the outlet temperature of the H_2SO_4 decomposer is increased, the mole fraction of H_2SO_4 is gradually decreased and the mole fractions of H_2O and SO₃ are increased. At the SO₃ decomposer outlet temperature of 500°C, remaining H_2SO_4 vapor is dehydrolyzed into SO₃ and H_2O . A small amount of SO₃ also decomposes into SO₂ and O₂.

Table 4 shows the mole fractions of the SO_3 decomposer with constant temperature of 500°C at H_2SO_4 decomposer. As the outlet temperature of the SO_3 decomposer is increased to 900°C, the mole fraction of the H_2SO_4 , H_2O and SO_3 are decreased and the mole fractions of SO_2 and O_2 are increased.

Figure 3 shows the mole fractions of the chemical composition of H_2SO_4 and SO_3 decomposer and its dependence on variations in the decomposer outlet temperature based on Aspen plus simulations.

Table 3: Mole fraction results for the cases of H₂SO₄

decomposer								
Comp.	H ₂ SO ₄ decomposer			SO ₃				
	CASE 1 (350°C)	CASE 2 (400°C)	CASE 3 (450°C)	decomposer (500°C)				
H ₂ SO ₄	0.3636	0.1620	0.0611	0.0224				
H ₂ O	0.3869	0.4756	0.5173	0.5284				
SO ₃	0.2453	0.3484	0.3879	0.3816				
SO ₂	0.0027	0.0092	0.0224	0.0450				
02	0.0014	0.0046	0.0112	0.0225				

Table 4: Mole fraction results for the cases of SO₃ decomposer

	H ₂ SO ₄	SO ₃ decomposer			
Comp.	decomposer (500°C)	CASE 4 (600°C)	CASE 5 (700°C)	CASE 6 (800°C)	CASE 7 (900°C)
H ₂ SO ₄	0.0224	0.0033	0.0005	8.89e-5	1.79e-5
H ₂ O	0.5284	0.5157	0.4901	0.4701	0.4595
SO ₃	0.3816	0.2973	0.1792	0.0897	0.0427
SO ₂	0.0450	0.1225	0.2201	0.2934	0.3319
O ₂	0.0225	0.0612	0.1101	0.1467	0.1659

Fig. 2. Flow sheet of the sulfuric acid loop for Aspen+ modeling

Fig. 3. Mole fraction of H_2SO_4 and SO_3 decomposer in Aspen+

3. Conclusions

A small scale sulfuric acid loop was simulated for the decomposition of the sulfuric acid and sulfur trioxide decomposer using Aspen plus process simulator. We obtained the following results for the modeling of the small scale sulfuric acid loop.

- 1. As the outlet temperature of the H_2SO_4 decomposer is increased, the mole fraction of H_2SO_4 is decreased and the mole fractions of H_2O and SO_3 are increased.
- 2. As the outlet temperature of the SO_3 decomposer is increased above 600°C, the mole fraction of the H₂SO₄ becomes very small. The mole fractions of SO₂ and O₂ are increased due to the decomposition of SO₃.
- 3. At the SO₃ decomposer outlet temperature of 900°C, very small quantities of SO₃ decompose into SO₂ and O₂.

ACKNOWLEDGMENTS

This work was supported by Nuclear Research & Development Program of the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MEST) (grant code:M20701010002-08M0101-00210).

REFERENCES

 J. H. Chang et al., A study of a Nuclear Hydrogen Production Demonstration Plant, Nuclear Engineering and TECHNOLOGY, Vol.39, No.2, pp. 111-122, 2007
 S. D. Hong et al., A High Pressure and High Temperature Sulfuric Acid Experimental System, Proc. KNS Autumn Meeting, 2008.

[3] Y. W. Kim et al., High Temperature and High Pressure Corrosion Resistant Process Heat Exchanger for a Nuclear Hydrogen Production System, Republic of Korea Patent submitted, 10-2006,012-0124716, 2006.
[4] ASPEN TECHLOGY INC., Aspen Plus.