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1. Introduction 
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The minimum DNBR (MDNBR) for prevention of 
the boiling crisis and the fuel clad melting is very 
important factor that should be consistently monitored 
in safety aspects. Artificial intelligence methods have 
been extensively and successfully applied to nonlinear 
function approximation such as the problem in question 
for predicting DNBR values. In this paper, support 
vector regression (SVR) model and fuzzy neural 
network (FNN) model are developed to predict the 
MDNBR using a number of measured signals from the 
reactor coolant system. Also, two models are trained 
using a training data set and verified against test data 
set, which does not include training data. The proposed 
MDNBR estimation algorithms were verified by using 
nuclear and thermal data acquired from many numerical 
simulations of the Yonggwang Nuclear Power Plant 
Unit 3 (YGN-3). 

where the constant λ  is introduced to measure the 
trade-off between the complexity of ( )f x  and losses. 

Parameters ξ  and *ξ  are slack variables, which 
represent the upper and the lower constraints on system 
output. 

The constrained optimization problem can be solved 
by applying the Lagrange multiplier technique to Eqs. 
(3) and (4). The regression function of Eq. (1) is 
expressed as follows: 
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where  is called the kernel 

function. A number of coefficients  are nonzero 
values and the corresponding training data points have 
approximation error equal to or larger than 
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ε . They are 
called support vectors. 

 
2. Model Development  

 
2.1 Support Vector Regression 

 
The SVR first maps the original input data x  into 

high dimensional feature space φ  using nonlinear 
mapping. Then, the unknown function is solved by 
determining the coefficients of the basis function of the 
linear expansion. The support vector approximation is 
expanded as follows: 
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2.2 Fuzzy Neural Network 

 
The fuzzy inference system is constructed from a 

collection of fuzzy if-then rules. Since the DNBR 
estimation problem at hand has the input and output of 
real values, a Takagi-Sugeno type fuzzy model [2] is 
used in which the if part is fuzzy linguistic, while the 
then part is crisp. The Takagi-Sugeno type fuzzy 
inference system can be described as follows: 

The function (k )φ x alled the feature, and parameters  
w and b  are ector weight and bias, which are 
calculated by minimizing the following regularized risk 
function [1]: 
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In this work, the symmetric Gaussian membership 

function is used. The output of an arbitrary i -th rule, 
if , consists of the first-order polynomial of inputs as 

given in Eq. (3). Minimizing the regularized risk function is 
equivalent to minimizing the following constrained risk 
function: 
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where  is the weighting value of the -th input on 
the -th rule output and  is the bias of the i -th rule 
output. So the fuzzy inference rule expressed by Eqs. 
(6) and (7) is called a first-order Takagi-Sugeno type 
fuzzy rule. 

ijq j
i irsubject to the constraints  
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The output of a fuzzy inference system with n  rules 

is a weighted sum of the consequent of all the fuzzy 
rules. The estimated output of the fuzzy inference 
system is given by: 
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The training of the fuzzy neural network is 
accomplished by a hybrid method combined with a 
backpropagation algorithm and a least-squares 
algorithm. 
 
2.3 Subtractive clustering 
 

Data based models such as SVR and FNN can be 
well trained when we use data that include much 
information. In this study, the training data set is 
selected using a subtractive clustering (SC) scheme [3]. 
The SC scheme introduces the concept of the 
information potential to determine the quantity of the 
information. Each data point is considered as a potential 
cluster center. The information potential of each data 
point is defined as 
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In general, after the i th cluster center has been 
determined, the potential of each data point is revised 
using the following equation: 
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These calculations stop if the inequality 

 becomes true, otherwise calculation 
continues. The input/output data positioned in cluster 
centers are selected to train the two models. 
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3. Application to the MDNBR Estimation 

 
We used the DNB data [4] obtained by numerical 

simulation of the first fuel cycle of YGN-3 using the 
MASTER and COBRA codes. The DNB data comprise 
a total of 18816 input-output data pairs; 

1 2 9( , , , , )rx x x y
( ,

without in-core instrument (ICI) 
signals and 1 2 12, , , )rx x x y  with ICI signals. 1x  
through 9x  are the input signals, which represent the 
reactor power, core inlet temperature, coolant pressure, 
mass flowrate, axial shape index (ASI), and R2, R3, R4, 
and R5 control rod positions. Here R2, R3, R4, and R5 
stand for the names of control rod groups. Also, 10x  
through 12x  represent 3 ICI signals (3 in-core neutron 
sensor signals at the 3 axial levels of the center core). 

 is the output signal, which indicates the MDNBR in 

the reactor core. ASI is defined as 
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 where BP  

is the bottom-half power of a nuclear reactor and  is 
the top-half power. The DNB data are divided into the 
training and the test data sets using the SC scheme. 

Two SVR and FNN models are trained for two DNBR 
data sets divided into both the positive ASI (9408 
cases) and the negative ASI (9408 cases), respectively. 

TP

Table I shows the MDNBR calculation accuracy 
calculated by the SVR models and the FNN models.  
Through the results in Table I, it is known that the 
performance of the SVR models is superior to the 
performance of the FNN models. 

 
Table I: Comparison of MDNBR calculation accuracy 

between the developed two models (with ICI signals) 

 

Training data Test data 
No. of
data 

points

RMS 
error 
(%) 

Max. 
error 
(%) 

No. of 
data 

points 

RMS 
error 
(%) 

Max. 
error 
(%) 

SVR 
model

Positive 
ASI 

1345 0.2956 2.5320 8063 0.3051 1.6133 

Negative 
ASI 

1420 0.2277 1.4546 7988 0.2218 1.7371 

Total 2765 0.2629 2.5320 16051 0.2669 1.7371 

FNN 
model

Positive 
ASI 

2823 0.9759 4.3692 6585 0.8924 4.6435 

Negative 
ASI 

2823 0.8218 4.0231 6585 0.7450 3.6084 

Total 5646 0.9022 4.3692 13170 0.8220 4.6435 

 
4. Conclusions 

 
In this paper, SVR and FNN models have been 

applied to the estimation of the MDNBR in the reactor 
core. The two models have been trained by using the 
data set prepared for training (training data) and 
verified by using test data. The developed models have 
been applied to the first fuel cycle of the Yonggwang 
unit 3 PWR plant respectively. From the results, it is 
known that both of two models predicted the MDNBR 
accurately. Especially, the RMS error of the SVR 
models for the test data is similar to the RMS error for 
the training data. Therefore, if the SVR models are 
trained first using the data for a variety of operating 
conditions, they can accurately estimate the MDNBR in 
a reactor core for any other operating data. Also, 
comparing the performance of two models, the RMS 
error estimated by FNN models are larger than those of 
SVR models, which means that the SVR model predicts 
the MDNBR values more properly than the FNN model. 
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