# The Study on the formation of Cs-U-O compounds in UO<sub>2</sub> fuel

Jong-Goo Kim, Seok-Young Lee, Yang-Soon Park, Yeong-Keong Ha, Kyuseok Song Nuclear Chemistry Research Center, Korea Atomic Energy Research Institute, Yusung, Taejon, Korea 305-353 njgkim@kaeri.re.kr

### 1. Introduction

Cs-U-O compounds as the reaction products between  $UO_2$  and Cs has been found experimentally at the periphery in  $UO_2$  fuels that were used at high power [1]. These Cs-U-O compounds have aroused an interest because the properties of thermal expansion and thermal conductivity of these newly formed compounds could influence the integrity of nuclear fuel.

Even a proof of Cs-U-O compounds formation in  $UO_2$  fuels by distribution mapping of Cs and U by Scanning Electron Microscopy (SEM) and Electron Probe Micro Analysis (EPMA) was reported [2], the exact chemical formula of the compounds has not been measured directly. In this work, some simulated experiments were performed in order to investigate the formation of Cs-U-O in  $UO_2$  fuels. Supposing CsI or Cs<sub>2</sub>O were cesium species in  $UO_2$  fuels, the reaction behaviors and products between  $UO_2$  and these Cs compounds were studied by using TG-DSC and XRD.

#### 2. Experimental

### 2.1. Reaction of UO2 and Cs<sub>2</sub>O

Mixed powder samples of UO<sub>2</sub> and Cs<sub>2</sub>O, where Cs/U (atomic ratio) = ~2, ~4, were prepared by weighing in the glove box. The samples were heated in argon atmosphere from 30°C to 400 °C with heating rate of 10°C/min. and holding 24 hours at 400 °C by using TG-DSC. And the color of reaction products were observed visually and crystal structures of the sample

# 2.2. Reaction of UO2 and CsI

phases were measured by XRD.

Mixed powder samples of  $UO_2$  and CsI were prepared and heated by the same manner with the upper case of  $UO_2$  and Cs<sub>2</sub>O. And also the reaction products were observed visually and crystal structures of the sample phases were measured by XRD.

## 2.3. Temperature condition for the formation of Cs-U-O from the reaction of $UO_2$ and $Cs_2O$

In order to know the temperature condition for the formation of Cs-U-O in the reaction of UO<sub>2</sub> and Cs<sub>2</sub>O, mixed samples of UO<sub>2</sub> and Cs<sub>2</sub>O were heated at several temperatures holding 24 hours, which are at 100°C, 150°C, 200°C, 250°C, 300°C, 350°C, 400°C, observing the color change of the sample.

### 3. Results and discussion

2.1. Reaction of UO2 and Cs<sub>2</sub>O

For both cases of Cs/U (atomic ratio) =  $\sim 2$ ,  $\sim 4$ , color change from black to orange which could be thought to be a proof of the occurrence of chemical reaction between UO<sub>2</sub> and Cs<sub>2</sub>O appeared after heating (Fig. 1).

When comparing the properties of reaction products of two cases, Cs/U (atomic ratio) =  $\sim 2$  and  $\sim 4$ , in the reaction, the reaction product of Cs/U = -4 was very hygroscopic, but on the other hand that of  $\sim 2$  was not. And the reaction product of Cs/U = -2 contained trace amount of black particle residuals in the orange sample which should be uranium oxide compounds remained in the reaction, but on the other hand that of ~4 did not contain any black particles. From the hygroscopic property and the absence of uranium oxides in the reaction product of Cs/U = -4, it could be thought that the initial amount of Cs<sub>2</sub>O is excess against UO<sub>2</sub> in the reaction and so hygroscopic Cs<sub>2</sub>O remained as an excess in the product. From the absence of hygroscopic property and the existence of trace uranium oxides in the reaction product of Cs/U = -2, it could be thought that Cs/U = -2 is proper stoichiometric mole ratio for the reaction.

From XRD measurement as shown in Fig.2, it was confirmed that orange sample is Cs-U-O compounds which are mainly  $Cs_2UO_4$  with  $Cs_4U_5O_{17}$  as a minor phase (Fig. 2).

### 2.2. Reaction of UO2 and CsI

In the case of CsI, the Cs-U-O compounds were not produced dissimilarly with the preceding case of the reaction between  $UO_2$  and  $Cs_2O$ .

# 2.3. Temperature condition for the formation of Cs-U-O from the reaction of UO<sub>2</sub> and Cs<sub>2</sub>O

By the observation of distinct color change from black to orange, it was known that temperature requirement for the formation of Cs-U-O compounds in the reaction of UO<sub>2</sub> and Cs<sub>2</sub>O is the temperature higher than  $350^{\circ}$ C.

#### 4. Conclusion

It is suggested that Cs-U-O compounds could be formed at the periphery in UO<sub>2</sub> fuels through the reaction between UO<sub>2</sub> and Cs<sub>2</sub>O at the temperature condition higher than 350°C and that the main product of the reaction would be Cs<sub>2</sub>UO<sub>4</sub>.



Fig. 1. Color change after heating the mixture of  $UO_2$  and  $Cs_2O$ .



Fig. 2. XRD patterns of reaction products of  $UO_2$  and  $Cs_2O$ .

### REFERENCES

[1] Sven Van den Berghe, A. Leenaers, B. Vos, L. Sannen, M. Verwerft, "Observation of a pellet-cladding bonding layer in high power fuel", IAEA-TECDOC—1416; 307-313

[2] Sven Van den Berghe, "La valence de l'uranium dans le system Cs-U-O: structures cristallines et films minces contribution a l'etude physic-chimique des joints de grains dans le combustible irradie", these de doctorat, l'universite de Limoges, 2001