Effect of recycled U₃O₈ powders on doped UO₂ pellets property

Ik Hui Nam*, Jae Ho Yang, Young Woo Rhee, Dong-Joo Kim, Jong Hun Kim, Keon Sik Kim

Korea Atomic Energy Research Institute, (150-1 Dukjing-Dong), 1045 Daedeokdaero, Yuseong-gu, Daejeon-si 305-353, Korea nam1313@kaeri.re.kr

1. Introduction

To reduce the fuel cycle costs and the total mass of spent light water reactor (LWR) fuels, it is necessary to extend the fuel discharged burn-up [1]. Extending the fuel discharged burn-up, while enhancing the safety features is one of the major challenges to nuclear energy industries because it can reduce the maintenance and fuel cycle cost [2]

Research on fuel pellets focuses on increasing the pellet density and grain size to increase the uranium contents and the high burn-up safety margins for LWRs. KAERI has developed a doping technology to increase the density and grain size of UO_2 pellets. In this technology, the 1000ppm of additives were used and the grain size of UO_2 pellets was increased up to 50µm. This grain size is about 5 times larger than that of commercial UO_2 pellet.

In a commercial UO₂ fuel pellet manufacturing process, defective UO₂ pellets or scraps are produced and those should be reused. A common recycling method for defective UO₂ pellets or scraps is that they are oxidized in air at about 450 °C to make U₃O₈ powder and then added to UO₂ powder. In the oxidation of a UO₂ pellet, the oxygen propagates along the grain boundary. The U₃O₈ formation on the grain boundary causes a spallation of the grains. So, size and shape of U₃O₈ powder deeply depend on the initial grain size of UO₂ pellets. Since the grain size of doped UO₂ pellet is quite larger than that of commercial pellet, it is expected that the shape and size of U₃O₈ from large grain sized pellets.

In this study, the effect of U_3O_8 powders on the doped UO_2 pellet property was examined. Two kinds of U_3O_8 powders which have different size to each other were prepared. Those U_3O_8 powders were mixed with doped UO_2 powders and sintered into pellets. Density and grain size evolution of pellets with increase of U_3O_8 contents were evaluated and compared.

2. Experimental

Mixed powder of MnO-Al₂O₃ additive and UO₂ was prepared. Total amount of Mn-Al in the powder mixture was 1000ppm in weight. Two kinds of U₃O₈ powders were prepared. ADU UO₂ powders larger than 150 μ m and Mn-Al doped UO₂ pellets were oxidized to U₃O₈ powders at 450°C in air, respectively. The initial grain size of the Mn-Al doped UO₂ pellet was about 40 μ m. $0\sim10$ wt% of those U₃O₈ powders were added to MnO-Al₂O₃ –UO₂ powder mixtures and then mixed for 24h with a tumbling mixer.

Final powder mixtures were pressed into green pellets and then sintered powder sintered at 1730 °C for 4 h in flowing H_2 gas.

The sintered density of the pellets was measured by a water immersion method. The pellets were sectioned axially, ground and polished. The polished pellets were thermally etched at 1290 °C in carbon dioxide gas in order to examine their grain boundaries. The pore and grain structure were examined by an optical microscope and grain size was determined by a linear intercept method.

3. Results

Fig. 1 shows the typical grain structure of sintered pellets. This figure clearly showed that the grain structure was greatly altered by the origin of U_3O_8 powder in the powder mixture. The grain size and density were decreased considerably in the UO_2 pellet which was fabricated by using the powder mixture of UO_2 with the U_3O_8 obtained by oxidation of large grained UO_2 pellet.

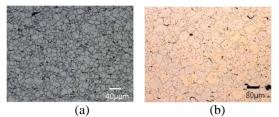


Fig. 1. Effect of U_3O_8 powders on the grain structures of sintered pellets: The U_3O_8 powders originated from (a) UO_2 sintered pellet, (b) powder.

Fig. 2 shows the density and grain size change according to initial U_3O_8 contents in UO_2 pellets. The density and grain size of the UO_2 pellet which was fabricated by using the pellet-oxidized U_3O_8 powder was shown in Fig. 2 (a). The density and grain size decreased due to the addition of U_3O_8 powder. It could be thought that a sinterability of the powder mixture was degraded by the pellet-oxidized U_3O_8 powder.

On the other hand, the density and grain size of UO_2 pellet which was produced by using the powderoxidized U_3O_8 powder hardly changed (Fig. 2 (b)).

Two kinds of U_3O_8 powders have a different size to each other. The particle size of powder-oxidized U_3O_8 powder is lower than that of pellet-oxidized powder. Therefore, it can be thought that there is a difference of specific surface area between pellet-oxidized and powder-oxidized U_3O_8 powder. The siterability of powder mixture would be affected by these differences.

pellet technology for improved performance at high burnup", Tokyo, October 28-November 1, 27 (1996) [2] OECD, NEA report No. 6224, Very High burn-ups in Light Water Reactors (2006).

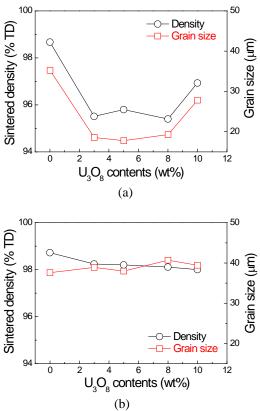


Fig. 2. The density and grain size of Mn-Al and U_3O_8 doped UO_2 pellet: (a) pellet-oxidized U_3O_8 doped, (b) powder-oxidized U_3O_8 doped.

4. Conclusions

The effect of U_3O_8 powders on the doped UO_2 pellet property was examined. The UO_2 pellet was fabricated by using two kinds of U_3O_8 powders which have different size to each other. And then, the density and grain size change of fabricated pellets were investigated.

In the results, the powder-oxidized U_3O_8 powder hardly affects the sinterability, but the pellet-oxidized U_3O_8 powder degraded the sinterability. Therefore, in the recycling of U_3O_8 powder, it can be concluded that the powder-oxidized U_3O_8 powder is more profitable.

ACKNOWLEDGEMENT

This study has been carried out under the Nuclear R&D Program by the Ministry of Education, Science and Technology in Korea.

REFERENCES

[1] Ph. Dehaudt et al., Proceeding of the IAEA Technical Committed Meeting, "Advanced in fuel