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1. Introduction 

 
Recently, the lattice Boltzmann method (LBM) has 

gained much attention for its ability to simulate fluid 

flows, and for its potential advantages over a 

conventional CFD method. The key advantages of LBM 

are, (1) suitability for parallel computations, (2) absence 

of the need to solve the time-consuming Poisson 

equation for a pressure, and (3) an ease with the way 

multiphase flows, complex geometries and interfacial 

dynamics may be treated[1].  Nevertheless, the LBM is 

considered as a mere alternative CFD tools, not a 

promising approach.  

The motion of the bubbles in a liquid has been the 

focus of both academic and practical interest. The 

central problem is the relationship between the rise 

velocity, bubble shape due to the interface deformation 

and flow field. The buoyancy effect due to density 

difference in the two phase flows is characterized with 

Eotvos and Morton numbers[2]. 

In this study, a single bubble rising under a buoyancy 

is simulated with LBM and VOF based on conventional 

CFD method. The two simulation results are compared 

with the previous experiments. The main objective of 

the present work is to establish the lattice Boltzmann 

method as a viable tool for the simulation of multiphase 

or multi-component flows.      

 

2. Methods and Results 

 

2.1 VOF method 

 

Here, we consider a flow with two phases which have 

different densities. The low density and high density are 

noted as Lρ and Hρ  respectively. The flow can be 

described by the Navier-Stokes equations and a volume 

of fluid equation as [3]  
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where bF
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is the body force, and ρ , µ are defined as 
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where Aρ and Bρ are the density of fluid A and fluid B 

respectively, and F is the volume fraction of fluid.   

 

2.2 Lattice Boltzmann method 

 

Here, we consider a Cahn-Hilliard equation instead of 

Eq. (1). The remainings are same. The flow can be 

described by the Navier-Stokes equations and an 

interface evolution equation as [4]  
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where Mθ  is called mobility, φµ  is the chemical 

potential, P is the pressure tensor, 
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rr
is the body force, and n, φ are 

defined as 
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where Aρ and Bρ are the density of fluid A and fluid B 

respectively.   

Under the lattice Boltzmann framework, Eq. (4) can 

be solved by iterating the evolution equation for a set of 

distribution functions. These distribution functions 

evolve with a modified lattice Boltzmann equation and 

BGK approximation, 
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where ig  is the distribution function, iΩ is the 

collision term, φτ  is the dimensionless single relaxation 

time, ie
r

 is the lattice velocity, and q is a constant 

coefficient.  

In Eq. (6), the term P⋅∇  is related to the surface 

tension force. This force can be rewritten as a potential 

term, 
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where 
2

0 sncp = , sc is the speed of sound.  

The potential form for the surface tension force is 

adopted to keep the energy conservation. 

Mathematically, the potential form and stress form are 

identical. However, numerically, the discretization error 

is different[4]. Thus, it is useful to eliminate spurious 

currents. 

The lattice Boltzmann implementation of Eqs. (5) and 

(6) can be described as  
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The equilibrium distributions satisfy the conservation 

laws as  
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The details are Ref. [4].  

 

2.3 Results 

 

The two dimensional single bubble rising under a 

buoyancy is simulated. The density ratio is 1000. The 

bubble is surrounded with stationary walls. Initially, it 

is located at a lower region of the computational 

domain (80x300). The dimensionless parameters are 

defined as 
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The bubble will rise at a nearly constant velocity due to 

the balance between the buoyancy and the drag force. 

The comparison of simulation results are shown in Fig. 

1. The two present results are in good agreement with 

the previous experiments. As shown in Fig. 1, the 

Eotvos number(Eo) increases gradually from 5 to 240. 

The increase of Eo is equivalent to the decrease of the 

surface tension. These will enhance the deformation of a 

bubble. The VOF model do not reduce the spurious 

currents of the static droplet test at the acceptable level 

and do not satisfy with the Laplace law for the small 

droplet. The VOF results are agreed well with the 

experiments in case of low Eo number. For high Eo 

number, the VOF results are deviated from the 

experiments and the LBM numerical results. These 

results are clearly presented in Fig. 2. 

 

3. Conclusion 

 

The lattice Boltzmann method for two phase flows 

has been applied to the simulations of bubbles under a  

buoyancy. The results for the rise velocity, and the 

bubble shapes with Eotvos and Morton numbers were 

found to be in good agreement with the VOF method 

and LBM method in case of a high surface tension(low 

Eo). For the low surface tension(high Eo), the LBM 

results are better than the VOF method.  

 

 

 
Fig. 1 The flow regime map of experiments

(2)
: S, 

Spherical; OE, oblate ellipsoid; OED, oblate 

ellipsoidal (disk-like and wobbling); OEC, oblate 

ellipsoidal cap; SCC, spherical cap with closed, 

steady wake; SCO, spherical cap with open, 

unsteady wake; SKS, skirted with smooth, steady 

skirt; SKW, skirted with wavy, unsteady skirt.; 

VOF numerical results A B  C D. 

 

 

 
Fig. 2 The final bubble shapes of the LBM results.  
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