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1. Introduction 

 
The wall-thinned defect is mainly caused by flow-

accelerated corrosion, and it decreases failure pressure, 
load-carrying capacity, deformation ability, and fatigue 
resistance of pipes. Thus it is necessary to examine the 
effect of wall-thinned defects on the failure behavior of 
pipes and to accurately estimate the collapse loads of 
wall-thinned pipes under various loading conditions. 
This work incorporates the support vector regression 
(SVR) that has been successfully employed to solve 
nonlinear regression and time series forecasting 
problems. To solve the support vectors, the collapse 
moment-related data should be provided. These data 
were obtained by performing finite element analyses 
(FEAs) for various loading conditions and defect 
geometries such as the thinning defect locations of 
extrados, intrados and crown, bend radius, bend angle, 
wall thickness at the thinning defect, thinning length, 
thinning angle, internal pressure, and bending modes of 
closing and opening. The collapse moment was 
predicted using these loading conditions and defect 
geometries as the inputs into the SVR models.  

 
2. Support Vector Regression 

 
2.1 Model Development 
 

An SVR model searches for the network weights of 
an artificial neural network with a kernel function by 
solving the non-convex unconstrained minimization 
problem. The hypothesis space of the linear functions is 
performed using an SVR model in multidimensional 
feature space. The basic concept of SVR is to 
nonlinearly map the original input data x  into high 
dimensional feature space φ and then to conduct linear 
regression in the feature space. The unknown 
regression function can be solved by determining the 
coefficients of the basis function of linear expansion. 
The support vector approximation is expanded as 
follows: 
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The function ( )kφ x  is called the feature and the 
parameters  and b  are the support vector weight and 
bias, respectively, which are calculated by minimizing 
the following regularized risk function [1]: 
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The constrained optimization problem can be solved 
by applying the Lagrange multiplier technique. The 
regression function of Eq. (2) can be expressed as 
follows: 
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where  is called the kernel 

function. A number of coefficients  are nonzero 
values and the corresponding training data points have 
approximation error equal to or larger than
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ε . They are 
called support vectors. The bias is calculated as 
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where  and rx sx  are support vectors (SVs) and these 
are data points outside the ε -insensitivity zone.  

 
2.2 Selection of Training Data 
 

The SC scheme introduces the concept of the 
information potential to determine the quantity of the 
information. Each data point is considered as a potential 
cluster center. The information potential of each data 
point is defined as 
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In general, after the i th cluster center has been 
determined, the potential of each data point is revised 
using the following equation: 
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These calculations stop if the inequality 

( ) (1)P i Pε∗ ∗<  becomes true, otherwise calculation 
continues. The input/output data positioned in cluster 
centers are selected to train the SVR model. 

 
3. Uncertainty Analysis 

 
By using an uncertainty analysis, a prediction 

interval can be calculated such that the exact value 
exists in the prediction interval at a specified 
confidence level. In this paper, an analytic uncertainty 
analysis method was used.  

The regression models of Eq. (3) can be expressed as  
,( )k ky f kε= +θx  (7) 
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For a regression model of an observation  which is 

he training data, the output prediction is 
given by the following: 
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The output prediction can be approximated according to 
the Taylor series expans

s follows: 

0 0 0
ˆ,ˆ ( ) Ty f ⎡ ⎤⋅ −⎣ ⎦≈ +θ θ θx f  (9) 

Then the prediction error can be calculated using the 
following: 

0 0 0 0

If the parameter is presumed to be estimated 
explicitly 
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e variance-covariance matrix 
n be estimated as follows: 
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The matrix F  is called the Jacobian matrix of first 
order partial derivatives 

m the least squares. 
The variance of the predicted output can be estimated 

as follows [2]: 
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The estimate with a 95% confidence interval is 
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The characteristic of the collapse moment is much 

locations of extrados, intrados, and crown. 
the

location 

Test data 

 
4. Application to the Collapse Moment Estimation 

different according to the three wall-thinned defect 
Therefore, 

 data are classified into the three classes of defect 
locations and three SVR models are designed for the 
three classes, respectively. Table 1 summaries the 
estimation results of collapse moments and coverage of 
the prediction intervals.  

 
Table 1: Estimation results of the collapse moment and 

coverage of the prediction interval  

Defect 
No. 

RMS 
Error 

Data 
number 

g 
Coverage 

Probability 
(%) (%) 

exceedin
prediction 

interval  
Extrados 170 1.6867 7/170 95.88% 
Intrados 170 0.6855 8/170 95.29% 
Crown 32 0.5300 84.38% 5/32 
Total 372 0.9674 20/372 94.62% 
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i rval, indicating 94.62% coverage. In addition, 
among three cases of the wall-thinned defect locations, 
the simulation results of only the intrados case are 
represented in the Fig. 1 and Fig. 2. 
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Fig. 1 The errors between actual collapse moment and 
estimated one for the test data and prediction intervals 
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Fig. 2 Coverage of prediction intervals for the test data 
 

 
In this paper, an been developed to 

estimate the collapse mome t of wall-thinned pipes. In 
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dition, prediction intervals were calculated using an 
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0.9674% for the test data. In addition, it is known from 
the simulation results that prediction intervals are very 
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accurately estimate the collapse moment for any other 
defect cases.  
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