Recycling process of Mn-Al doped large grain UO₂ pellets

Ik Hui Nam*, Jae Ho Yang, Young Woo Rhee, Dong-Joo Kim, Jong hun Kim, Keon Sik Kim, Kun Woo Song

Korea Atomic Energy Research Institute, (150-1 Dukjing-Dong), 1045 Daedeokdaero, Yuseong-gu, Daejeon-si 305-353, Korea nam1313@kaeri.re.kr

1. Introduction

To reduce the fuel cycle costs and the total mass of spent light water reactor (LWR) fuels, it is necessary to extend the fuel discharged burn-up [1]. Research on fuel pellets focuses on increasing the pellet density and grain size to increase the uranium contents and the high burnup safety margins for LWRs.

KAERI are developing the large grain UO₂ pellet for the same purpose. Small amount of additives doping technology are used to increase the grain size and the high temperature deformation of UO₂ pellets. Various promising additive candidates had been developed during the last 3 years and the MnO-Al₂O₃ doped UO₂ fuel pellet is one of the most promising candidates.

In a commercial UO₂ fuel pellet manufacturing process, defective UO₂ pellets or scraps are produced and those should be reused. A common recycling method for defective UO₂ pellets or scraps is that they are oxidized in air at about 450°C to make U₃O₈ powder and then added to UO_2 powder. In the oxidation of a UO_2 pellet, the oxygen propagates along the grain boundary. The U_3O_8 formation on the grain boundary causes a spallation of the grains. So, size and shape of U₃O₈ powder deeply depend on the initial grain size of UO₂ pellets. In the case of Mn-Al doped large grain pellets, the average grain size is about 45µm and about 5 times larger than a typical un-doped UO₂ pellet which has grain size of about 8~10µm. That big difference in grain size is expected to cause a big difference in recycled U3O8 powder morphology.

Addition of U_3O_8 to UO_2 leads to a drop in the pellet density, impeding a grain growth and the formation of graph- like pore segregates. Such degradation of the UO_2 pellet properties by adding the recycled U_3O_8 powder depend on the U_3O_8 powder properties. So, it is necessary to understand the property and its effect on the pellet of the recycled U_3O_8 .

This paper shows a preliminary result about the recycled U_3O_8 powder which was obtained by oxidation of Mn-Al doped large grain pellets.

2. Experimental

The 1000ppm of Mn-Al doped UO_2 fuel pellets were prepared by a conventional sintering process. Sintered pellets were oxidized to U_3O_8 powders at different temperatures of 330 and 450 °C in air, respectively. The U_3O_8 powders morphology was examined by SEM.

 $3\sim10$ wt% of those U₃O₈ powders and MnO-Al₂O₃ additives were added to the UO₂ powder. Total amount of Mn-Al in the powder mixture was 1000ppm in weight. Powder mixtures were mixed with a tumbling mixer. The powder mixture was pressed into green pellets at 300 MPa. The green pellets were sintered at 1730 °C for 4 h in flowing H₂ gas.

The sintered density of the UO_2 pellets was measured by a water immersion method. The pellets were sectioned axially, ground and polished. The polished pellets were thermally etched at 1250 °C in carbon dioxide gas in order to examine their grain boundaries. The pore and grain structure were examined by an optical microscope and grain size was determined by a linear intercept method.

3. Results

3.1. Recycled U_3O_8 powders morphology.

Fig. 1 SEM powder morphologies of recycled U₃O₈ powders obtained by oxidizing the conventional UO₂ pellets (a), (b) and 1000ppm Mn-Al doped large grain pellets (c), (d). The oxidation temperatures were 330 °C (a), (c) and 450 °C (b), (d), respectively.

Fig. 1 shows the SEM micrographs of U_3O_8 powder which was obtained by oxidizing the conventional and large grain UO_2 pellets at different temperatures. In this figure, we can find that the U_3O_8 particle size from the large grain pellets is quite larger than that from conventional UO₂ pellets. As mentioned above, this size difference is due to the grain size difference between the pellets before oxidation. Generally, It is known that the sinter-ability of powder decrease with increasing the particle size. So, the pellet density and grain size might be more decreased when we reuse the U_3O_8 powder of (c) or (d) instead (a) or (b) in the fabrication of UO₂ pellet.

3.2. Effect of recycled U_3O_8 powders on the Mn-Al doped UO_2 pellets.

5wt% of large grain U_3O_8 powder which is correspond to the powder of Fig. 1(d) was added to Mn-Al doped UO₂ powder and mixture was sintered into pellets. Fig.2 shows the grain structure of 1000ppm of Mn-Al doped UO₂ pellets without or with the addition of large grain U_3O_8 powder, respectively. Fig. 2(b) clearly reveals the density and grain size reduction by addition of large grain U_3O_8 powder. The pellet density was measured to be 98 and 95.8%TD, respectively. In conventional process, about 0.2%TD of density was decreased by addition of 1wt% U_3O_8 powder. In this case, 0.5% of density drop was observed by the addition of 1wt% U_3O_8 .

Fig. 2. Grain structures of sintered pellets.(a) Mn-Al doped UO2 pellet, (b) Mn-Al and 5wt% of U₃O₈ doped UO2 pellet.

4. Conclusions

The powder size of a recycled U_3O_8 from Mn-Al doped large grain UO_2 pellet was very larger than that from conventional UO_2 pellet. These large size recycled U_3O_8 powder accelerate the density drop and grain size decrease of UO_2 pellet when it reuse in the fuel fabrication process. So, it is necessary to develop an advanced recycling process of large size U_3O_8 powder in order to enhance the sinterability, thereby to enhance the nuclear fuel pellet properties.

Acknowledgements

This study has been carried out under the Nuclear R&D Program by the Ministry of Education, Science and Technology in Korea.

REFERENCES

[1] Ph. Dehaudt et al., Proceeding of the IAEA Technical Committed Meeting, "Advanced in fuel pellet technology for improved performance at high-burnup", Tohyo, October 28-November 1, 27 (1996)